当前位置: 首页 > news >正文

网站推广的基本方法是网站域名.xin

网站推广的基本方法是,网站域名.xin,做名片用哪个网站,2008 iis 添加 网站 权限设置权限Langchain 的 Conversation summary memory 现在让我们看一下使用稍微复杂的内存类型 - ConversationSummaryMemory 。这种类型的记忆会随着时间的推移创建对话的摘要。这对于随着时间的推移压缩对话中的信息非常有用。对话摘要内存对发生的对话进行总结,并将当前摘…

Langchain 的 Conversation summary memory

现在让我们看一下使用稍微复杂的内存类型 - ConversationSummaryMemory 。这种类型的记忆会随着时间的推移创建对话的摘要。这对于随着时间的推移压缩对话中的信息非常有用。对话摘要内存对发生的对话进行总结,并将当前摘要存储在内存中。然后可以使用该内存将迄今为止的对话摘要注入提示/链中。此内存对于较长的对话最有用,因为在提示中逐字保留过去的消息历史记录会占用太多令牌。

我们首先来探讨一下这种存储器的基本功能。

示例代码,

from langchain.memory import ConversationSummaryMemory, ChatMessageHistory
from langchain.llms import OpenAI
memory = ConversationSummaryMemory(llm=OpenAI(temperature=0))
memory.save_context({"input": "hi"}, {"output": "whats up"})
memory.load_memory_variables({})

输出结果,

    {'history': '\nThe human greets the AI, to which the AI responds.'}

我们还可以获取历史记录作为消息列表(如果您将其与聊天模型一起使用,这非常有用)。

memory = ConversationSummaryMemory(llm=OpenAI(temperature=0), return_messages=True)
memory.save_context({"input": "hi"}, {"output": "whats up"})
memory.load_memory_variables({})

输出结果,

    {'history': [SystemMessage(content='\nThe human greets the AI, to which the AI responds.', additional_kwargs={})]}

我们也可以直接使用 predict_new_summary 方法。

messages = memory.chat_memory.messages
previous_summary = ""
memory.predict_new_summary(messages, previous_summary)

输出结果,

    '\nThe human greets the AI, to which the AI responds.'

Initializing with messages

如果您有此类之外的消息,您可以使用 ChatMessageHistory 轻松初始化该类。加载期间,将计算摘要。

示例代码,

history = ChatMessageHistory()
history.add_user_message("hi")
history.add_ai_message("hi there!")
memory = ConversationSummaryMemory.from_messages(llm=OpenAI(temperature=0), chat_memory=history, return_messages=True)
memory.buffer

输出结果,

    '\nThe human greets the AI, to which the AI responds with a friendly greeting.'

Using in a chain

让我们看一下在链中使用它的示例,再次设置 verbose=True 以便我们可以看到提示。

示例代码,

from langchain.llms import OpenAI
from langchain.chains import ConversationChain
llm = OpenAI(temperature=0)
conversation_with_summary = ConversationChain(llm=llm, memory=ConversationSummaryMemory(llm=OpenAI()),verbose=True
)
conversation_with_summary.predict(input="Hi, what's up?")

输出结果,

    > Entering new ConversationChain chain...Prompt after formatting:The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Current conversation:Human: Hi, what's up?AI:> Finished chain." Hi there! I'm doing great. I'm currently helping a customer with a technical issue. How about you?"

示例代码,

conversation_with_summary.predict(input="Tell me more about it!")

输出结果,

    > Entering new ConversationChain chain...Prompt after formatting:The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Current conversation:The human greeted the AI and asked how it was doing. The AI replied that it was doing great and was currently helping a customer with a technical issue.Human: Tell me more about it!AI:> Finished chain." Sure! The customer is having trouble with their computer not connecting to the internet. I'm helping them troubleshoot the issue and figure out what the problem is. So far, we've tried resetting the router and checking the network settings, but the issue still persists. We're currently looking into other possible solutions."

示例代码,

conversation_with_summary.predict(input="Very cool -- what is the scope of the project?")

输出结果,

    > Entering new ConversationChain chain...Prompt after formatting:The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Current conversation:The human greeted the AI and asked how it was doing. The AI replied that it was doing great and was currently helping a customer with a technical issue where their computer was not connecting to the internet. The AI was troubleshooting the issue and had already tried resetting the router and checking the network settings, but the issue still persisted and they were looking into other possible solutions.Human: Very cool -- what is the scope of the project?AI:> Finished chain." The scope of the project is to troubleshoot the customer's computer issue and find a solution that will allow them to connect to the internet. We are currently exploring different possibilities and have already tried resetting the router and checking the network settings, but the issue still persists."

完结!

http://www.yayakq.cn/news/787321/

相关文章:

  • 网站jquery在线优化网页设计培训好学吗
  • 免费的微信小程序徐州关键字优化公司
  • 网站上传的工具推广系统建站
  • wamp做的网站标签图标中石化两学一做网站
  • 网站登记表网站删除关键词
  • 做网站有什么专业术语合肥网站建设哪家好
  • 高清做网站插图云南网站优化排名
  • 建设网站前需要的市场分析网站改版了
  • 网站做百度推广需要什么材料婚车租赁
  • 上海网站建设制作公司网站建设项目安排计划表
  • 网站建设公司如何签单网站一年续费多少钱
  • 中小企业网站制作流程外贸网站怎么做
  • 生活常识网站源码vps 网站 需要绑定域名吗
  • 攀枝花建设集团网站亚马逊网站联盟
  • 工程造价信息价在什么网站查江镇做包子网站
  • 临海如何制作公司网站框架申请公司
  • 做衣服网站免费网络营销课程
  • 医疗器械类网站前置审批材料模板青岛互联网企业
  • 咸阳网站建设制作打开浏览器历史记录
  • 免费行情软件app网站大全做电影网站如何盈利
  • 郑州网站搭建的公司专门做网上链接推广的网站
  • 定制网站和模板建站重庆市建设工程造价管理协会官网
  • 晋城商城网站开发设计多少钱需要交个人所得税
  • 用wordpress仿一个网站关于友谊的连接
  • 怎样优化网站做网站分几种
  • 浙江网站怎么做推广网站建设应具备的技能
  • 西安可以做网站的做外贸在哪个网站好
  • 沽源网站建设案例网站数据库空间增大
  • 杭州企业网站专业设计手工制作玩具
  • led网站模板知名建筑设计网站