当前位置: 首页 > news >正文

大连制作公司网站成都做一个小企业网站需要多少钱

大连制作公司网站,成都做一个小企业网站需要多少钱,济南市住建局官方网站,网络广告推广服务引言 在计算机视觉领域,获取天空的颜色是一个常见任务,广泛应用于天气分析、环境感知和图像增强等场景。本篇博客将介绍如何通过已知的天空区域 Mask 提取天空像素,并使用 K-means 聚类分析天空颜色,最终根据颜色占比查表得到主导…

引言

在计算机视觉领域,获取天空的颜色是一个常见任务,广泛应用于天气分析、环境感知和图像增强等场景。本篇博客将介绍如何通过已知的天空区域 Mask 提取天空像素,并使用 K-means 聚类分析天空颜色,最终根据颜色占比查表得到主导颜色。

一、流程概述

本文的流程分为以下几个步骤:

1. 使用分割 Mask 提取天空区域像素。
2. 通过 K-means 聚类对天空像素进行颜色聚类。
3. 统计每个聚类的面积占比,筛选面积占比超过 30% 的颜色。
4. 根据筛选结果查表获取对应的颜色名称。
接下来我们将详细讲解每个步骤。

二、提取天空区域像素

分割 Mask 是一个二值化的图像,其中 1 表示天空区域,0 表示非天空区域。通过 Mask,可以从原图中提取出天空区域的像素。

from typing import Tuple
import numpy as np
from PIL import Imagedef extract_sky_pixels(image_path: str, sky_mask: np.ndarray) -> np.ndarray:"""根据天空区域的 Mask 提取像素。:param image_path: 输入图像的路径。:param sky_mask: 天空区域的二值化 Mask,1 表示天空,0 表示非天空。:return: 天空区域的像素数组,形状为 (N, 3),每行表示一个像素的 [R, G, B] 值。"""image = Image.open(image_path).convert("RGB")image_np = np.array(image)  # 转为 NumPy 数组return image_np[sky_mask == 1]  # 仅保留天空区域的像素

三、K-means 聚类分析天空颜色

提取天空像素后,我们使用 K-means 聚类将颜色分为若干类(默认设定为 k=3),并统计每类颜色的面积占比。
以下是 K-means 聚类的代码实现:

from sklearn.cluster import KMeans
from typing import Tupledef kmeans_clustering(sky_pixels: np.ndarray, k: int = 3) -> Tuple[np.ndarray, np.ndarray]:"""使用 K-means 对天空像素聚类。:param sky_pixels: 天空区域的像素数组,形状为 (N, 3),每行表示 [R, G, B] 值。:param k: 聚类的数量,默认值为 3。:return: - cluster_centers: 每个聚类的中心颜色,形状为 (k, 3)。- area_ratios: 每个聚类的面积占比,形状为 (k,)。"""# 归一化像素值(0-1 范围)sky_pixels_normalized = sky_pixels / 255.0# 使用 K-means 聚类kmeans = KMeans(n_clusters=k, random_state=0).fit(sky_pixels_normalized)# 获取每个像素的聚类标签labels = kmeans.labels_# 每个聚类的中心颜色cluster_centers = kmeans.cluster_centers_ * 255.0# 统计每个聚类的像素数量label_counts = np.bincount(labels)# 计算每个聚类的面积占比area_ratios = label_counts / len(sky_pixels)return cluster_centers, area_ratios

四、筛选主导颜色并查表

我们关心面积占比超过 30% 的颜色,并通过查表将 RGB 值转换为对应的颜色名称。
以下是颜色查表和筛选的代码:

from typing import List, Tupledef rgb_to_color_name(rgb: np.ndarray) -> str:"""根据 RGB 值查表获取颜色名称。:param rgb: RGB 颜色值,形状为 (3,)。:return: 颜色名称。"""# 定义常见颜色的 RGB 值和名称color_table = {"Sky Blue": (135, 206, 235),"Deep Sky Blue": (0, 191, 255),"Light Blue": (173, 216, 230),"Azure": (240, 255, 255),"Navy": (0, 0, 128)}# 计算每个颜色的欧几里得距离min_dist = float('inf')color_name = "Unknown"for name, value in color_table.items():dist = np.linalg.norm(np.array(rgb) - np.array(value))if dist < min_dist:min_dist = distcolor_name = namereturn color_namedef filter_and_get_color_names(cluster_centers: np.ndarray, area_ratios: np.ndarray, threshold: float = 0.3
) -> List[Tuple[str, float]]:"""筛选面积占比超过阈值的颜色,并查表获取颜色名称。:param cluster_centers: 每个聚类的中心颜色,形状为 (k, 3)。:param area_ratios: 每个聚类的面积占比,形状为 (k,)。:param threshold: 面积占比的筛选阈值,默认为 0.3。:return: 主导颜色及其面积占比的列表,每个元素为 (颜色名称, 面积占比)。"""colors = []for center, ratio in zip(cluster_centers, area_ratios):if ratio > threshold:color_name = rgb_to_color_name(center)colors.append((color_name, ratio))return colors

五、完整代码示例

以下是完整的流程代码,实现从分割 Mask 提取天空颜色的过程:

from typing import List, Tuple
import numpy as npdef get_sky_colors(image_path: str, sky_mask: np.ndarray, k: int = 3, threshold: float = 0.3) -> List[Tuple[str, float]]:"""获取天空区域的主导颜色。:param image_path: 输入图像的路径。:param sky_mask: 天空区域的二值化 Mask,1 表示天空,0 表示非天空。:param k: 聚类的数量,默认值为 3。:param threshold: 面积占比的筛选阈值,默认为 0.3。:return: 主导颜色及其面积占比的列表,每个元素为 (颜色名称, 面积占比)。"""# Step 1: 提取天空像素sky_pixels = extract_sky_pixels(image_path, sky_mask)# Step 2: K-means 聚类cluster_centers, area_ratios = kmeans_clustering(sky_pixels, k)# Step 3: 筛选并查表获取颜色名称dominant_colors = filter_and_get_color_names(cluster_centers, area_ratios, threshold)return dominant_colors# 测试
if __name__ == "__main__":# 假设已知分割 Masksample_mask = np.load("sky_mask.npy")  # 载入二值化 Maskimage_path = "example.jpg"  # 输入图像路径sky_colors = get_sky_colors(image_path, sample_mask)print("天空颜色:", sky_colors)

六、总结

通过分割 Mask 和 K-means 聚类,我们可以高效提取天空区域的颜色特征,并获取主导颜色。这种方法简单易用,适合多种场景需求。
希望这篇博客能帮助你快速上手天空颜色提取的实现!如有疑问,欢迎在评论区交流!

http://www.yayakq.cn/news/766533/

相关文章:

  • 共享的网站备案视频号视频怎么下载
  • 景点介绍网站开发设计网络营销推广目标
  • 建设通官方网站下载e航国外 网站有做验证码吗
  • 西安网站设计费用移动互联网开发方向包含哪些课程
  • 易读网站建设网站建设 中企动力嘉兴0573
  • 包头怎样做网站app制作企业
  • 网站差异做网站设计师的感想
  • 网站建设中的html页面奉贤网站开发
  • 中国海洋大学站群网站建设生产建设网站基坑开挖深度
  • 中小型企业网站优化价格辽宁住房城乡建设部官方网站
  • 建立公司微信平台 网站平台做棋牌网站要什么源码
  • 做书的封面网站娱乐网站策划书
  • 扶风高端企业网站建设个人简历表
  • 专业网站建站企业杭州设计门户网站
  • 查询网站服务器地址浙江宝业建设集团网站
  • 嘉兴自助建站模板天津市建设网官网
  • jsp网站开发网上订餐系统wordpress google字体本地
  • 网站模板 收费企业设备管理系统
  • 直播网站开发源码下载少女たちよ在线观看动漫4
  • 深圳做营销网站北京vi设计公司哪
  • 广州南沙区建设和交通局网站做配资 怎么在网站联系客户
  • 婚庆公司网站设计贸易公司介绍模板
  • 兰州seo整站优化服务商做网站点击率赚钱吗
  • 官方网站建设专业公司做网站如何添加表单
  • 桂林北站到桂林站多远网站建设和网站设计公司在哪里
  • 公司建设网站的优势wordpress 跳转链接
  • 知名的网站建设公司住房和城乡建设部网站公告
  • 室内设计学校在哪里百度网站排名seo
  • 云南网站优化哪家好设计官网需要的流程
  • 怎样建设简单的网站网站建设需要学多久