当前位置: 首页 > news >正文

平凉公司网站建设图片交易网站如何建设

平凉公司网站建设,图片交易网站如何建设,二级网站怎样做排名,python语言特点Logistic回归模型: 适用于二分类或多分类问题,样本特征是数值型(否则需要转换为数值型) 策略:极大似然估计 算法:随机梯度 或 BFGS算法(改进的拟牛顿法) 线性回归表达式&#xf…

Logistic回归模型:

适用于二分类或多分类问题,样本特征是数值型(否则需要转换为数值型)

策略:极大似然估计

算法:随机梯度 或 BFGS算法(改进的拟牛顿法)

线性回归表达式:

y_i = w\cdot x_i+b

 式子中x_i = (x_i^{(1)},x_i^{(2)},...,x_i^{(N)});w为N个特征权重组成的向量,即w=(w_1,w_2,...,w_N);b是第i个样本对应的偏置常数。

Sigmoid函数:

g(z)=\frac{1}{1+e^{-z}}

 

对数概率 

y=log(\frac{p}{1-p})

p = \frac{e^y}{1+e^y}

p=\frac{e^{wx+b}}{1+e^{wx+b}} 

Logistic 回归模型:

 p(y=1|x)=\frac{e^{wx+b}}{1+e^{wx+b}}p(y=0|x)=\frac{1}{1+e^{wx+b}}

构造似然函数:

log(L)=\sum_{i=1}^{N}y_i(wx_i+b)+log(1-p_i)

 log(L)=\sum_{i=1}^{N}y_i(wx_i+b)-log(1+e^{wx_i+b})

\hat{w},\hat{b}=argmax_{w,b}\sum_{i=1}^{N}y_i(wx_i+b)-log(1+e^{wx_i+b})

Logistic回归优化:梯度下降,分别对权重w,偏置b求导数:

\frac{\partial }{\partial w}lnL(w,b)=\frac{\partial }{\partial w}\sum_{i=1}^{N}y_i(wx_i+b)-ln(1+e^{wx_i+b})

\frac{\partial }{\partial b}lnL(w,b)=\frac{\partial }{\partial b}\sum_{i=1}^{N}y_i(wx_i+b)-ln(1+e^{wx_i+b})

综上,可归纳Logistic回归的过程:

实例:鸢尾花数据集划分: 

class Logistic_Regression:def __init__(self):self.coef_ = Noneself.intercept_ = Noneself._theta = Nonedef _sigmoid(self,t):return 1./(1.+np.exp(-t)) def fit(self,X_train,y_train,eta = 0.01, n_iters =1e4):def J(theta,X_b,y):y_hat = self._sigmoid(X_b.dot(theta))try:return -np.sum(y*np.log(y_hat)  +(1-y)*np.log(1-y_hat)  )except:return float('inf')def dJ(theta,X_b,y):return X_b.T.dot(self._sigmoid(X_b.dot(theta))-y)def gradient_descent(initia_theta,X_b,y, eta,n_iters =1e4,epsilon =1e-8 ):theta = initia_thetacur_iter = 0while cur_iter < n_iters:gradient = dJ(theta,X_b, y)last_theta = thetatheta = theta - eta * gradientif (abs(J(theta,X_b, y)-J(last_theta,X_b, y)) < epsilon):breakcur_iter += 1return thetaX_b = np.hstack([np.ones(len(X_train)).reshape(-1,1),X_train])initia_theta = np.zeros(X_b.shape[1])self._theta = gradient_descent(initia_theta,X_b,y_train,eta,n_iters)self.intercept_ = self._theta[0]self.coef_ = self._theta[1:]return selfdef predict_proba(self,X_predict):X_b = np.hstack([np.ones(len(X_predict)).reshape(-1,1),X_predict])return self._sigmoid(X_b.dot(self._theta))def predict(self,X_predict):proba = self.predict_proba(X_predict)return np.array(proba >= 0.5,dtype = 'int')def score(self,X_test,y_test):y_predict = self.predict(X_test)return accuracy_score(y_test, y_predict)def __repr__(self):return "LogisticRegression()"

可视化划分:

from sklearn import datasets
iris = datasets.load_iris()
X = iris.data
y = iris.target
X = X[y<2,:2]
y = y[y<2]
plot_decision_boundary(log_reg,X_test)
plt.scatter(X_test[y_test==0,0],X_test[y_test==0,1])
plt.scatter(X_test[y_test==1,0],X_test[y_test==1,1])
plt.show()

总结 

注意:虽然 Logistic 回归的名字叫作回归,但其实它是一种分类方法!!!

优点

  1. 逻辑斯蒂回归模型基于简单的线性函数,易于理解和实现。
  2. Logistic 回归模型对一般的分类问题都可使用。
  3. Logistic 回归模型不仅可以预测出样本类别,还可以得到预测为某类别的近似概率,这在许多需要利用概率辅助决策的任务中比较实用。
  4. Logistic 回归模型中使用的对数损失函数是任意阶可导的凸函数,有很好的数学性质,可避免局部最小值问题。

缺点

  1. Logis ic 回归模型本质上还是种线性模型,只能做线性分类,不适合处理非线性的情况,一般需要结合较多的人工特征处理使用。
  2. Logistic 回归对正负样本的分布比较敏感,所以要注意样本的平衡性,即y=1的样本数不能太少。
  3. 模型不能自动捕捉特征之间的交互作用,需要手动进行特征工程。
http://www.yayakq.cn/news/138333/

相关文章:

  • 西安网站建设小程序网站建设相关基础实验总结
  • 二级域名做网站好不好做网站属于什么费用
  • 怎样入门网站开发网络设计与实施课程设计
  • p2p网站建设教程建网站注意什么
  • 郑州网站建设 郑州网站设计宁晋网站建设代理价格
  • 有名的网站制作公司技术博客 wordpress
  • 滕州做网站的微信设计网站建设
  • 服装行业网站开发学校网站建设营运预算
  • 如何做网站推广页面网站备案是哪个部门
  • 沛县做网站网站建设规划书电商
  • 网站建设和网络推广外包网站开发毕业设计中期检查表
  • 凡科网站建设平台wpautop wordpress
  • 没有网站可以做cpc吗汽车之家网站
  • 如何维护建设网站深圳全网营销公司有哪些
  • 网站建设报价单ppt哪个网站可下载免费ppt
  • 绥化安达网站建设做电源的网站
  • 青岛市城市建设局网站郑州整站网站推广工具
  • 南宁网站建设免费推广网站推广软文
  • 网站建设 乐清网络公司成都有哪些好玩的地方
  • 做网站app价格多少钱建筑工程网络副业
  • 网页设计素材网站花学做网站论坛好吗
  • 重庆sem网站推广深圳深圳龙岗网站建设
  • 如何查找昆明做网站服务的公司百度竞价推广开户
  • 帮企业做网站中国纪检监察报多久一期
  • 自己做网站商城需要营业执照吗公司简历模板
  • 网站开发做网站青岛seo服务哪家好
  • 深圳企业网站建设标准最新注册公司流程及费用
  • 天津网站建设品牌推广wordpress 局部刷新
  • 公司网站建设情况wordpress文章不登录看不到
  • 做设计不进设计公司网站手游门户网站建设