当前位置: 首页 > news >正文

国外虚拟币网站开发韩国有哪些专业做汽车的网站

国外虚拟币网站开发,韩国有哪些专业做汽车的网站,荣昌网站建设,单页网站定义全文链接:http://tecdat.cn/?p31162 最近我们被客户要求撰写关于SV模型的研究报告,包括一些图形和统计输出(点击文末“阅读原文”获取完整代码数据)。 相关视频 本文做SV模型,选取马尔可夫蒙特卡罗法(MCMC)、正则化广…

全文链接:http://tecdat.cn/?p=31162

最近我们被客户要求撰写关于SV模型的研究报告,包括一些图形和统计输出点击文末“阅读原文”获取完整代码数据)。

相关视频

本文做SV模型,选取马尔可夫蒙特卡罗法(MCMC)、正则化广义矩估计法和准最大似然估计法估计。

模拟SV模型的估计方法:

sim <- svsim(1000,mu=-9, phi = 0.97, sigma = 0.15)print(sim)summary(sim)

ef4b320fd170a150efac30e1913ebad8.png

plot(sim)

d6de3d1257932ac36c67b2c9a5f76b80.png

绘制上证指数收益时间序列图、散点图、自相关图与偏自相关图

我们选取上证指数5分钟高频数据:

data=read.csv("上证指数-5min.csv",header=TRUE)
#open:开盘价  close:收盘价 vol:成交量 amount:成交额
head(data,5)  #观察数据的头5行
tail(data,5)  #观察数据的最后5行
Close.ptd<-data$close
Close.rtd<-diff(log(Close.ptd))  #指标一:logReturn
rets=diff(data$close)/data$close[-length(data$close)]  #指标二:Daily Returns,我们选择Daily Returns
library(tseries)
adf.test(rets)## 绘制上证指数收益时间序列图、散点图、自相关图与偏自相关图
Close.ptd.ts<-ts(Close.ptd,start=c(2005,1,4),freq=242)  
plot(Close.ptd.ts, type="l",main="(a) 上证指数日收盘价序列图",acf(Close.rtd,main='',xlab='Lag',ylab='ACF',las=1)    
title(main='(b) 上证指数收益率自相关检验',cex.main=0.95)pacf(Close.rtd,main='',xlab='Lag',ylab='PACF',las=1)               
title(main='(c) 上证指数收益率偏自相关检验',cex.main=0.95)
def.off## Q-Q图、经验累积分布ecdf图、密度图、直方图 
qqnorm(Close.rtd,main="(a) 上证指数收益率Q-Q图",cex.main=0.95,xlab='理论分位数',ylab='样本分位数')            
qqline(Close.rtd)                                 
#经验累积分布ecdf图
plot(ECD,lwd = 2,main="(b) 上证指数收益率累积分布函数图",cex.main=0.95,las=1) 
xx <- unique(sort(c(seq(-3, 2, length=24), knots(ECD))))         
abline(v = knots(ECD), lty=2, col='gray70')                           
x1 <- c((-4):3)             # 设定区间范围
lines(x1,pnorm(x1,mean(Close.rtdC[1:10]),sd(Close.rtd[1:10])))  
#密度图
plot(D, main="(c) 上证指数核密度曲线图 ",xlab="收益", ylab='密度',xlim = c(-7,7), ylim=c(0,0.5),cex.main=0.95)       
polygon(D, col="gray", border="black")                 
curve(dnorm,lty = 2, add = TRUE)                        lines(x2,dnorm(x2,mean=0,sd=1))      
abline(v=0,lty = 3)                                     
legend("topright", legend=c("核密度","正态密度"),lty=c(1,2),cex=0.5)
#直方图
hist(Close.rtd[1:100],xaxt='n',main='(d) 上证指数收益率直方图',xlab='收益/100',ylab='密度', freq=F,cex.main=0.95,las=1)        
lines(x2,dnorm(x2,mean(Close.rtd[1:100]),sd(Close.rtd[1:100]))) 
axis(1,at=axTicks(1),labels = as.integer(axTicks(1))/100 )

736daffad7936c14765db0917ee3fef2.png

c0397bd076db103878d427d265198852.png

b4cb1efff6a5688f3c795e802f9453df.png


点击标题查阅往期内容

9964e26614fc7a8ed8a82030cc7f296f.jpeg

【视频】随机波动率SV模型原理和Python对标普SP500股票指数预测|数据分享

outside_default.png

左右滑动查看更多

outside_default.png

01

d2f58cdc97e0497cb1a8a072e55df57d.png

02

5744e95c151ee2af12130a37f1ab3eb6.png

03

e513a923d19da09ed976979f24fe441d.png

04

fc3035a60701d647b9ba541c88e0d66a.png

SV模型

{N <- length(logReturn)mu <- (1/N)*sum(logReturn)sqrt((1/N) * sum((logReturn - mu)^2))
}return=-1.5*log(h)-y^2/(2*h)-(log(h)-mu)^2/(2*sigma2)
}

马尔可夫链蒙特卡罗估计

该模型使用了Kastner和Fruhwirth-Schnatter所描述的算法。使用的R代码是:

###Markov Chain Monte Carlosummary(mcmc)

5e8f914dafd3bb3b6a323a592a1bb834.png

准最大似然估计

SV模型可以用QML方法在R中用许多不同的状态空间和Kalman滤波包来估计。

a0=c(parm[1])P0=matrix(parm[3]^2/(1-parm[2]^2))dt=matrix(parm[1]*(1-parm[2]))ct=matrix(-1.27)Tt=matrix(parm[2])Zt=matrix(1)HHt=matrix(parm[3]^2)GGt=matrix(pi^2/2)ans<-fkf(a0=sp$a0,P0=sp$P0,dt=sp$dt,ct=sp$ct,Tt=sp$Tt,Zt=sp$Zt,HHt=sp$HHt,GG

b3439ac0efbf00e45968a191990588ac.png

正则化广义矩阵

在R函数中定义矩条件,然后估计参数0。

moments <- c (m1 = sqrt(2/pi)*exp(mu/2 + sig2h/8),m2 = exp(mu +  sig2h/2 ) ,m3 = 2*sqrt ( 2/pi ) * exp( 3*mu/2 + 9*sig2h/8 ) ,gmm(g = sv.moments , x =rets , t0=c(mu=-10, phi=0.9,sigmaeta= 0.2),

2da2330ce70501db7554cdd0680049b0.png


c8838981c3e30ffa4f412f33c5692bc9.png

点击文末“阅读原文”

获取全文完整代码数据资料。

本文选自《R语言随机波动模型SV:马尔可夫蒙特卡罗法MCMC、正则化广义矩估计和准最大似然估计上证指数收益时间序列》。

点击标题查阅往期内容

HAR-RV-J与递归神经网络(RNN)混合模型预测和交易大型股票指数的高频波动率

Matlab马尔可夫链蒙特卡罗法(MCMC)估计随机波动率(SV,Stochastic Volatility) 模型

R语言隐马尔可夫模型HMM连续序列重要性重抽样CSIR估计随机波动率模型SV分析股票收益率时间序列

马尔可夫Markov区制转移模型分析基金利率

马尔可夫区制转移模型Markov regime switching

时变马尔可夫区制转换MRS自回归模型分析经济时间序列

马尔可夫转换模型研究交通伤亡人数事故时间序列预测

如何实现马尔可夫链蒙特卡罗MCMC模型、Metropolis算法?

Matlab用BUGS马尔可夫区制转换Markov switching随机波动率模型、序列蒙特卡罗SMC、M H采样分析时间序列

R语言BUGS序列蒙特卡罗SMC、马尔可夫转换随机波动率SV模型、粒子滤波、Metropolis Hasting采样时间序列分析

matlab用马尔可夫链蒙特卡罗 (MCMC) 的Logistic逻辑回归模型分析汽车实验数据

stata马尔可夫Markov区制转移模型分析基金利率

PYTHON用时变马尔可夫区制转换(MRS)自回归模型分析经济时间序列

R语言使用马尔可夫链对营销中的渠道归因建模

matlab实现MCMC的马尔可夫转换ARMA - GARCH模型估计

R语言隐马尔可夫模型HMM识别不断变化的股票市场条件

R语言中的隐马尔可夫HMM模型实例

用机器学习识别不断变化的股市状况—隐马尔科夫模型(HMM)

Matlab马尔可夫链蒙特卡罗法(MCMC)估计随机波动率(SV,Stochastic Volatility) 模型

MATLAB中的马尔可夫区制转移(Markov regime switching)模型

Matlab马尔可夫区制转换动态回归模型估计GDP增长率

R语言马尔可夫区制转移模型Markov regime switching

stata马尔可夫Markov区制转移模型分析基金利率

R语言如何做马尔可夫转换模型markov switching model

R语言隐马尔可夫模型HMM识别股市变化分析报告

R语言中实现马尔可夫链蒙特卡罗MCMC模型

384d655c4e75854c2ae3ec8afe1e1acf.png

a06b2ff1f5cb81a2df13dc151527557f.jpeg

8bd21994c71d4d2cdd7c564cb3c29370.png

http://www.yayakq.cn/news/738417/

相关文章:

  • 保定做网站排名推广ui设计软件sketch
  • 自适应网站做mip改造上海加强旅游住宿业与商业场所
  • 绍兴网站建设seo网站跳转到另外一个网站怎么做
  • 高端网站教建设o基础学建网站
  • 建设银行网站能买手机com域名和网站
  • 杭州品牌网站制作圆古制作公司官网
  • 在家做兼职官方网站平台建设网站需要体现的流程有哪些
  • 如何创建个人网站模板桂林龙胜网站建设
  • 揭阳网站制作教程小程序云服务器多少钱
  • 网站建好了还需要什么维护怎么给网站做短信
  • 做网站百度收费吗武夷山网站建设
  • 浙江网站建设制作263企业邮箱手机版
  • 外贸seo网站搭建saas网站建设
  • 做网站用织梦好吗公司变更法人债务怎么处理
  • 手机营销网站制作兼职做网站的软件
  • 做企业网站服务器黄页88网能不能发免费的广告
  • 电子商务网站建设模块产品展示网站方案
  • 工程建设招标中心网站网站建设营销话术
  • 那些网站是vue做的给网站做友情链接
  • 校园门户网站系统建设学校建设网站
  • logo网站设计素材wordpress入门建站
  • 网络营销基础网站建设与运营可否用nas做网站
  • 做网站公司关键词爱空间家装怎么样?两点告诉你
  • 邯郸做网站的公司哪家好昆明网站seo公司
  • 鞍山新款网站制作哪家好乐云seo网站建设性价比高
  • 做团餐 承包食堂的企业网站uiapp博客 个人网站
  • 地方门户网站如何盈利百度推广费用怎么算
  • 网站都是用html做的吗中国建设网站工程承包分包法
  • seo研究中心好客站宁波厂家关键词优化
  • 佛山网站建设专业定制WordPress下载框插件