当前位置: 首页 > news >正文

网站主页设计优点营销策划公司 采纳策划

网站主页设计优点,营销策划公司 采纳策划,wordpress群组,如何自己开一个平台【0】基础定义 按位与运算:全1取1,其余取0。按位或运算:全0取0,其余取1。 【1】引言 前序学习进程中,已经对图像按位与计算进行了详细探究,相关文章链接如下: python学opencv|读取图像&…

【0】基础定义

按位与运算:全1取1,其余取0。按位或运算:全0取0,其余取1。

【1】引言

前序学习进程中,已经对图像按位与计算进行了详细探究,相关文章链接如下:

python学opencv|读取图像(四十三)使用cv2.bitwise_and()函数实现图像按位与运算-CSDN博客

python学opencv|读取图像(四十四)原理探究:bitwise_and()函数实现图像按位与运算-CSDN博客

python学opencv|读取图像(四十五)增加掩模:使用cv2.bitwise_and()函数实现图像按位与运算-CSDN博客

图像的按位与运算,是将各个像素点的BGR值先由十进制转二进制,在二进制环境下进行按位与运算后,再转回十进制的过程。

当三个图像进行按位与运算时,先前两个图像按位与运算,再将按位与运算结果和第三个图像执行按位与运算。

在此基础上,本次文章进一步探究图像的按位或运算。

在按位与运算的学习基础上,不妨大胆猜测图像的按位或运算工作原理:将各个像素点的BGR值先由十进制转二进制,在二进制环境下进行按位或运算后,再转回十进制。

【2】官网教程

点击下方链接,直达按位或运算的官网教程:

OpenCV: Operations on arrays

官网对按位或运算函数cv2.bitwise_or()的解释为:

图1

 在这里,对应的参数意义为:

具体的,参数意义为:

    void cv::bitwise_or     (     InputArray     src1,       #第一个图像
            InputArray     src2,                                        #第二个图像
            OutputArray     dst,                                       #输出图像
            InputArray     mask = noArray() )                  #掩模,单通道数据,可选参数

按位或运算要求数据的大小一致,对于三通道图像,会逐个通道进行按位或运算。

按位或运算的mask掩模参数也要求是单通道的二维矩阵。

【3】代码测试

由于前述对bitwise_and()函数的探究已经足够详细,所以可以直接借用先前代码的大部分内容,稍加修改就能获得bitwise_or()函数的完整代码:

import cv2 as cv # 引入CV模块
import numpy as np #引入numpy模块# 读取图片-直接转化灰度图
src = cv.imread('srcx.png') #读取图像
dst=src #输出图像
gray_src=cv.cvtColor(src,cv.COLOR_BGR2GRAY) #转化为灰度图
dstg=gray_src #输出图像
print('初始图像像素大小为',src.shape)
print('初始图像灰度图像素大小为',gray_src.shape)# 定义第二个图像
image = np.zeros(src.shape, np.uint8)  # 定义一个竖直和水平像素与初始图像等大的全0矩阵
print('初始图像像素大小为',src.shape)
image[50:350, :, :] = 180  # 行掩模
image[:,120:200,: ] = 255  # 列掩模
image[:, :, 1] = 180  # 第二个通道值#定义掩模矩阵
mask = np.zeros((gray_src.shape), np.uint8)  # 定义一个竖直和水平像素与初始图像等大的全0矩阵
mask[280:350, :] = 155  # 水平区域
mask[:,150:350] = 100  # 竖直区域#按位与运算
img=cv.bitwise_or(src,image) #与运算
img2=cv.bitwise_or(src,image,mask=mask) #与运算#显示BGR值
print("dst像素数为[300,180]位置处的BGR=", dst[300,180])  # 获取像素数为[100,100]位置处的BGR
print("image像素数为[300,180]位置处的BGR=", image[300,180])  # 获取像素数为[100,100]位置处的BGR
print("img像素数为[300,180]位置处的BGR=", img[300,180])  # 获取像素数为[100,100]位置处的BGR
print("img2像素数为[300,180]位置处的BGR=", img2[300,180])  # 获取像素数为[100,100]位置处的BGRa=np.zeros((1,3),np.uint8) #定义矩阵
a=dst[300,180] #将像素点BGR直接赋值给矩阵
b=np.zeros((1,3),np.uint8) #定义矩阵
b=image[300,180] #将像素点BGR直接赋值给矩阵
c=np.zeros((1,3),np.uint8) #定义矩阵
d=np.zeros((1,3),np.uint8) #定义矩阵
d=image[300,180] #将像素点BGR直接赋值给矩阵
e=np.zeros((1,3),np.uint8) #定义矩阵#二进制按位与计算e
for i in range(3): #计数print('a','[0,',i,']=',a[i],'的二进制转化值=', bin(a[i]), ',b=','[0,',i,']=', b[i],'的二进制转化值=',bin(b[i])) #输出二进制转化值c[0,i]=np.bitwise_and(a[i],b[i]) #赋值按位与计算值print('c',[0,i],'=',c[0,i]) #输出按位与计算值print('c','[0,',i,']=',[0,i],'的二进制转化值=', bin(c[0,i]), ',d=','[0,',i,']=', d[i],'的二进制转化值=',bin(d[i])) #输出二进制转化值e[0,i]=np.bitwise_and(c[0,i],d[i]) #赋值按位与计算值print('e',[0,i],'=',e[0,i]) #输出按位与计算值#输出矩阵结果
print('a=',a) #输出矩阵
print('b=',b) #输出矩阵
print('c=',c) #输出矩阵
print('d=',d) #输出矩阵
print('e=',e) #输出矩阵#合并图像
himg=np.hstack((src,img))
himg2=np.hstack((src,img2))
himg3=np.hstack((img,img2))
# 显示和保存定义的图像
cv.imshow('dst', dst)  # 显示图像
cv.imshow('or-img', img)  # 显示图像
cv.imwrite('or-img.png', img)  # 保存图像
cv.imshow('or-img2', img2)  # 显示图像
cv.imwrite('or-img2.png', img2)  # 保存图像
cv.imshow('or-image', image)  # 显示图像
cv.imwrite('or-image.png', image)  # 保存图像
cv.imshow('or-mask', mask)  # 显示图像
cv.imwrite('or-mask.png', mask)  # 保存图像
cv.imshow('or-himg', himg)  # 显示图像
cv.imwrite('or-himg.png', himg)  # 保存图像
cv.imshow('or-himg2', himg2)  # 显示图像
cv.imwrite('or-himg2.png', himg2)  # 保存图像
cv.imshow('or-himg3', himg3)  # 显示图像
cv.imwrite('or-himg3.png', himg3)  # 保存图像
cv.waitKey()  # 图像不关闭
cv.destroyAllWindows()  # 释放所有窗口

代码里给出了两种按位或运算的执行过程,第一个不带掩模参数,第二个带有掩模参数:

#按位与运算
img=cv.bitwise_or(src,image) #与运算
img2=cv.bitwise_or(src,image,mask=mask) #与运算

另外将特定像素点的BGR值按位与运算改为了按位或运算:

#二进制按位与计算e
for i in range(3): #计数print('a','[0,',i,']=',a[i],'的二进制转化值=', bin(a[i]), ',b=','[0,',i,']=', b[i],'的二进制转化值=',bin(b[i])) #输出二进制转化值c[0,i]=np.bitwise_or(a[i],b[i]) #赋值按位与计算值print('c',[0,i],'=',c[0,i]) #输出按位与计算值print('c','[0,',i,']=',[0,i],'的二进制转化值=', bin(c[0,i]), ',d=','[0,',i,']=', d[i],'的二进制转化值=',bin(d[i])) #输出二进制转化值e[0,i]=np.bitwise_or(c[0,i],d[i]) #赋值按位与计算值print('e',[0,i],'=',e[0,i]) #输出按位与计算值

代码运行相关的图像为:

图2 初始图像srcx.png

图3 带掩模的第二张图像or-image.png

 图3 掩模矩阵对应的第三张图像or-mask.png

 图4 不带掩模矩阵的按位或运算效果or-img.png 

 图5 带掩模矩阵的按位或运算效果or-img2.png  

 图6 不带掩模矩阵VS带掩模矩阵的按位或运算效果or-himg3.png

由图2至图6可见,随着按位或运算函数cv2.bitwise_or()的功能执行,图像的色彩出现了明显变化。为增强对比效果,继续输出图像:

 图7 初始图像和不带掩模矩阵的按位或运算效果or-himg.png 

 图8 初始图像和不带掩模矩阵的按位或运算效果or-himg2.png 

综合图7和图8,按位或运算函数cv2.bitwise_or()执行后,只在带有掩模的区域出现了图像。为此查看特定像素点的BGR值:

图9  特定像素点BGR按位或运算验证

由图9读取的数据可知:使用cv2.bitwise_or()函数执行图像按位或计算时,当面向两张图像时,各个像素点的BGR值都是按照十进制转二进制、二进制按位或计算,然后再转回十进制的顺序进行。当面向三张图像时,先对前两张图像执行按位或计算,此时会获得一张中间图像,然后中间图像和第三个图像再次执行按位或计算。

图10 cv2.bitwise_or()函数工作流程

【3】总结

掌握了python+opencv实现使用cv2.bitwise_or()函数实现图像带掩模矩阵按位或计算的技巧。

http://www.yayakq.cn/news/889943/

相关文章:

  • 做网站用什么编程百度信息流代运营
  • 网站建设顶层设计腾讯公司网站
  • 东莞中小企业网站制作设计一个产品
  • 做网站和做网页有啥区别黄页88网官网首页
  • 软件公司网站模板商丘做网站的公司
  • 石家庄专业模板网站制作价格如何免费申请自己的网站
  • 在百度上建网站怎么建设怎么看网站用的什么后台
  • 有主体新增网站vi设计公司 成都
  • 网站安全建设总结报告网络搭建及应用
  • 单位网站建设的必要性程序员wordpress插件
  • 网站开发介绍pptwordpress版本对应的php版本号
  • 支持api网站开发黄冈网站建设优化排名
  • 商城网站 模板有哪些免费的ppt模板下载网站
  • 公司网站建设需要什么科目上海做核酸最新通知
  • 企业建设网站维护织梦 视频网站源码
  • 长沙做网站哪家公司好搭建个人网站的步骤
  • 小孩做阅读的网站有哪些宁波工业设计公司排名
  • 公司官方网站一般什么公司做网站建设的重要性
  • 医院招聘网站建设和维护做网站如何收益
  • 电子商务网站建设技术有哪些方面网站设计技能
  • wordpress图书馆主题seo综合排名优化
  • 免费建站的平台康展 wordpress
  • 贴吧怎么做网站视频手机网站价格
  • 如何做百度推广的网站百度极速版下载
  • 行业网站推广方案公众号推广方案
  • 陕西省建设厅网站官网企业月报广州seo报价
  • 请问大连谁家做网站网站备案的要求
  • 嘉兴网站建设网站建设怎么做信息流广告代理商
  • 网页设计师主要是做什么的呢杭州上城区抖音seo如何
  • 江都区城乡建设局网站马局网站建设与管理需要什么软件有哪些方面