当前位置: 首页 > news >正文

semcms外贸网站管理系统奉贤网站开发

semcms外贸网站管理系统,奉贤网站开发,北京公司注册地址多少钱,网站推广网DeepSort详解 1、Sort回顾2、DeepSort的状态向量3、DeepSort的外观特征4、DeepSort的track状态5、DeepSort的代价矩阵以及门控矩阵6、DeepSort的级联匹配 1、Sort回顾 查看这篇博客 2、DeepSort的状态向量 Sort中的卡尔曼滤波使用的目标的状态向量是一个7维的向量&#xff0c…

DeepSort详解

  • 1、Sort回顾
  • 2、DeepSort的状态向量
  • 3、DeepSort的外观特征
  • 4、DeepSort的track状态
  • 5、DeepSort的代价矩阵以及门控矩阵
  • 6、DeepSort的级联匹配

1、Sort回顾

查看这篇博客

2、DeepSort的状态向量

  Sort中的卡尔曼滤波使用的目标的状态向量是一个7维的向量,如下图所示:
在这里插入图片描述
其中,u,v表示目标中心的水平和垂直像素的位置;s,r表示目标边界框的面积和纵横比。
DeepSort的状态量中加入了一个纵横比的变化率,如下图所示:
在这里插入图片描述
从理论上来讲,加入了一个纵横比的变化率确实能够提高目标跟踪的准确性,比较目标一直在移动会有遮挡,显示的检测框的纵横比肯定也不是固定的。这是DeepSort的运动特征表示。下面我们看DeepSort的外观特征表示。

3、DeepSort的外观特征

  为了解决Sort跟踪算法中,对于目标遮挡或检测失效等问题带来的,id消失之后再出现时的id不断变化的问题,DeepSort加入了一个特征提取网络来进行对特征进行匹配,可以关联上长时间被遮挡但又出现的目标、。DeepSort使用了一个简单的卷积神经网络来提取检测框中的目标特征向量,这里的网络可以自己diy,也可以使用目前主流的现有的CNN,如ResNet18,ResNet50等。在跟踪的过程中,DeepSort会将目标在当前帧的特征向量进行提取,并保存在track对象的属性中。在后面的每一帧中,都会执行一次将当前帧的目标特征向量与gallery中的特征向量进行相似度的计算(比如余弦相似度)。这个相似度将会作为DeepSort匹配阶段的一个重要的判别依据。

4、DeepSort的track状态

  DeepSort源码中的track类有三种状态,Tentative(暂定状态),Confirmed(确定状态),Deleted(删除态)。在开始检测时,检测的对象都会初始化一个track对象,此时的track为Tentative暂定状态,当这个track关联的检测对象连续三帧被检测到并且关联上这个track时,那么在第四帧就会将这个track的状态升级为Confirmed状态,如果track状态为Tentative并且当前帧失配了或者track的update次数已经超过了最大age,则将track的状态降级为Deleted状态。

5、DeepSort的代价矩阵以及门控矩阵

  将当前帧的检测框与先前存在的track进行关联的方式可以依靠匈牙利匹配算法来实现。但是在这之前,我们需要解决代价矩阵的问题。Sort的代价矩阵是由当前帧的运动特征与前一帧的运动特征的卡尔曼预测值进行iou的比对来产生的,这样做会导致较大的局限性。因此,DeepSort寻找了两个适当的指标来结合运动特征和外观特征。

  • 首先我们来看运动特征:作者采用了马氏距离来衡量卡尔曼预测态和当前测量值之间的差异。关于马氏距离的解释可以查看这篇博客。下图则是DeepSort中外观特征的马氏距离计算公式:
    在这里插入图片描述
    其中yi,si表示第i个track分布到测量空间的投影,dj表示第j个目标检测框,在代码中的体现:
    在这里插入图片描述
    我们计算出外观特征的距离之后,我们还需要一个阈值来判断是否是我们想要的匹配,其中四维空间的马氏阈值为9.4877,这在代码中也有体现:
    在这里插入图片描述
    有了阈值之后,我们就可以来卡满足匹配要求的外观特征和不满足匹配要求的外观特征了:
    在这里插入图片描述
    在计算出了feature的余弦相似度之后,我们可以使用这个外观特征的门控特性来卡,大于这个马氏阈值的,我们将feature的余弦相似度设置成一个很大的固定值,小于这个马氏阈值的,我们则保留本来的余弦相似度,代码中的体现:
    在这里插入图片描述

  • 外观特征:作者在每一个track中都创建了一个gallery来存储这个track在不同帧中的外观特征,并且每个外观特征的模长为1(特征层经过了归一化),论文中用Rk表示,Rk中最多存储100个外观特征。因此,当我们获取当前帧的所有检测框时就得到了所有当前帧的外观特征,我们拿这些外观特征与不同track对象中的Rk库进行余弦相似度的计算,并得到其中的最小值:
    在这里插入图片描述
    其中rj表示当前帧的第j个检测框,rk(i)表示第i个track的gallery特征库(余弦相似度值越大,说明两个目标之间越相似),因此这里的值取最小值表示最相似的。同样,设定一个阈值来卡余弦相似度:
    在这里插入图片描述
    在源码中,这里的阈值设置为0.2,即大于0.2的都置为一个固定值:
    在这里插入图片描述
    在这里插入图片描述

  • 运动特征与外观特征的融合:运动特征与外观特征的作用是相辅相成的,试想一下,运动特征可以匹配上短期内的物体位移带来的目标位置变化,但是遮挡之后目标的位置中断导致无法匹配上,而外观特征可以搜寻过往的track的特征,来进行匹配。但是当画面中出现两个目标的外观特征十分相似而空间上的分离能让我们确定他们时两个物体时,这时使用外观特征则会导致将他们视为一个track的误判,这时就需要运动特征来提供判断依据,因此作者采用了加权的方式来综合两个代价矩阵,得到最终的代价矩阵:
    在这里插入图片描述
    最后,我们联合运动门控矩阵(马氏距离阈值得到)与外观门控矩阵(max_distance阈值得到),得到了最终的关联性门控矩阵:
    在这里插入图片描述
    然后结合最终的代价矩阵和门控矩阵来得到最终用于匈牙利匹配的矩阵并进行级联匹配。

6、DeepSort的级联匹配

  对confirmed状态下的tracks和当前的检测框进行级联匹配,这里的级联指的是不同update次数下的tracks我们都需要与当前的所有检测框进行匹配。先遍历当前的所有tracks,并将其分成confirmed和unconfirmed的两种track,记录下他们的索引在对应列表中。然后进入matching_cascade方法中,从0开始遍历到cascade_depth,源码中设置为70,即我们遍历到最多在有70帧还未更新的track,遍历当前level下的所有tracks,挑出满足的tracks,然后进入min_cost_matching函数中与当前帧的检测框进行匹配,返回的是已经配对上的track索引和检测框索引,以及还剩下的未匹配的检测框索引;这个循环一直持续,当未匹配的检测框列表为空时,提前退出循环,算法流程如下图所示:
在这里插入图片描述
min_cost_matching函数中调用了gated_metric函数来进行代价矩阵的计算:

        def gated_metric(tracks, dets, track_indices, detection_indices):features = np.array([dets[i].feature for i in detection_indices])targets = np.array([tracks[i].track_id for i in track_indices])# 通过最近邻(余弦距离)计算出成本矩阵(代价矩阵)cost_matrix = self.metric.distance(features, targets)# 计算门控后的成本矩阵(代价矩阵)cost_matrix = linear_assignment.gate_cost_matrix(self.kf, cost_matrix, tracks, dets, track_indices,detection_indices)return cost_matrix

gated_metric函数中得到了外观特征代价矩阵,并且得到了运动特征的马氏距离门控矩阵,对代价矩阵进行了第一次的门控。
在这里插入图片描述
这里的distance_metric就是我们刚才提到的gated_metric在这里的调用,然后红框内的第二行就是使用最大余弦相似度进行第二次的门控,这样一来,关于卡尔曼状态的门控和外观特征的门控我们就都用上了。

最后说一下我对公式5的理解,我一开始以为的是作者想每次都把这两者给算出来然后按照一定的权重进行相加得到代价矩阵,结果在代码中找了很久并没有发现这一个操作。然后我才发现,也许这里的lambda不是1就是0,也就是说外观的代价矩阵还是外观的,在这一阶段我们利用外观代价矩阵进行匹配,在另一个阶段我们就会利用运动代价矩阵进行匹配。因此在级联匹配之后,还有一个利用iou的运动代价矩阵来对级联匹配中还没有匹配成功的目标进行二次匹配。也就是上文中我说的相辅相成的功能。 如有理解不对的地方,还请大家多多指出~~

http://www.yayakq.cn/news/632043/

相关文章:

  • 域名就是网站名吗福州网站建设效果
  • 设计公司的网站wordpress文章标题总有网站名
  • 成都响应式网站建百度网站怎么做的
  • 自己买域名建设网站肇庆东莞网站建设
  • 买网站空间需要知道的网站建设和制作
  • 建设公司网站应有哪些功能用糖做的网站
  • 郑州企业网站模板建站个人网页设计作业总结
  • html代码冰墩墩seo优化网络公司
  • 网站中文名alpine wordpress
  • 北京两学一做网站ui设计师面试自我介绍
  • 织梦高端大气网站模板保网微商城官网登录
  • 建设监理协会官方网站重庆网站seo按天计费
  • 免费建网站代理织梦做不了视频网站
  • 招聘网站建设维护云服务器建设简易网站
  • 网站可以有二维码吗好玩网页传奇
  • 网站怎么做子分类网络公司排名
  • 查询网站域名备案网站建设中应该注意什么
  • 如何把网站做跳转浏览器链接餐饮业网站建设招标书
  • asp做一个简单网站网站建设策划包括哪些内容
  • 如何让百度搜索到自己的网站游戏开发定制
  • 网站建设公司山而网站内容建设流程
  • 那个网站做生鲜汽车之家官网首页
  • 西班牙语网站建设注意事项如何学习网站制作
  • 网站icp备案信息是什么直播app开发价格
  • 微信微网站制作公司营销策划包括哪些内容
  • 厦门建站公司哪家好做网站公司 汉狮网络
  • 最简单的网站开发软件有哪些汕头网站制作找哪家
  • 网站的建设哪个好河南建设集团
  • 广东手机版建站系统开发手机主题如何自己制作网站
  • 网站建设可用性的五个方面帮做网站设计与规划作业