当前位置: 首页 > news >正文

网站最好服务器大连建设工程信息网专家库

网站最好服务器,大连建设工程信息网专家库,wordpress有没有linux,dw做网站是静态还是动态文章目录 0 前言1 技术介绍1.1 技术概括1.2 目前表情识别实现技术 2 实现效果3 深度学习表情识别实现过程3.1 网络架构3.2 数据3.3 实现流程3.4 部分实现代码 4 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习人脸表情识别系…

文章目录

  • 0 前言
  • 1 技术介绍
    • 1.1 技术概括
    • 1.2 目前表情识别实现技术
  • 2 实现效果
  • 3 深度学习表情识别实现过程
    • 3.1 网络架构
    • 3.2 数据
    • 3.3 实现流程
    • 3.4 部分实现代码
  • 4 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习人脸表情识别系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 技术介绍

1.1 技术概括

面部表情识别技术源于1971年心理学家Ekman和Friesen的一项研究,他们提出人类主要有六种基本情感,每种情感以唯一的表情来反映当时的心理活动,这六种情感分别是愤怒(anger)、高兴(happiness)、悲伤
(sadness)、惊讶(surprise)、厌恶(disgust)和恐惧(fear)。

尽管人类的情感维度和表情复杂度远不是数字6可以量化的,但总体而言,这6种也差不多够描述了。

在这里插入图片描述

1.2 目前表情识别实现技术

在这里插入图片描述
在这里插入图片描述

2 实现效果

废话不多说,先上实现效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

3 深度学习表情识别实现过程

3.1 网络架构

在这里插入图片描述
面部表情识别CNN架构(改编自 埃因霍芬理工大学PARsE结构图)

其中,通过卷积操作来创建特征映射,将卷积核挨个与图像进行卷积,从而创建一组要素图,并在其后通过池化(pooling)操作来降维。

在这里插入图片描述

3.2 数据

主要来源于kaggle比赛,下载地址。
有七种表情类别: (0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral).
数据是48x48 灰度图,格式比较奇葩。
第一列是情绪分类,第二列是图像的numpy,第三列是train or test。

在这里插入图片描述

3.3 实现流程

在这里插入图片描述

3.4 部分实现代码

import cv2import sysimport jsonimport numpy as npfrom keras.models import model_from_jsonemotions = ['angry', 'fear', 'happy', 'sad', 'surprise', 'neutral']cascPath = sys.argv[1]faceCascade = cv2.CascadeClassifier(cascPath)noseCascade = cv2.CascadeClassifier(cascPath)# load json and create model archjson_file = open('model.json','r')loaded_model_json = json_file.read()json_file.close()model = model_from_json(loaded_model_json)# load weights into new modelmodel.load_weights('model.h5')# overlay meme facedef overlay_memeface(probs):if max(probs) > 0.8:emotion = emotions[np.argmax(probs)]return 'meme_faces/{}-{}.png'.format(emotion, emotion)else:index1, index2 = np.argsort(probs)[::-1][:2]emotion1 = emotions[index1]emotion2 = emotions[index2]return 'meme_faces/{}-{}.png'.format(emotion1, emotion2)def predict_emotion(face_image_gray): # a single cropped faceresized_img = cv2.resize(face_image_gray, (48,48), interpolation = cv2.INTER_AREA)# cv2.imwrite(str(index)+'.png', resized_img)image = resized_img.reshape(1, 1, 48, 48)list_of_list = model.predict(image, batch_size=1, verbose=1)angry, fear, happy, sad, surprise, neutral = [prob for lst in list_of_list for prob in lst]return [angry, fear, happy, sad, surprise, neutral]video_capture = cv2.VideoCapture(0)while True:# Capture frame-by-frameret, frame = video_capture.read()img_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY,1)faces = faceCascade.detectMultiScale(img_gray,scaleFactor=1.1,minNeighbors=5,minSize=(30, 30),flags=cv2.cv.CV_HAAR_SCALE_IMAGE)# Draw a rectangle around the facesfor (x, y, w, h) in faces:face_image_gray = img_gray[y:y+h, x:x+w]filename = overlay_memeface(predict_emotion(face_image_gray))print filenamememe = cv2.imread(filename,-1)# meme = (meme/256).astype('uint8')try:meme.shape[2]except:meme = meme.reshape(meme.shape[0], meme.shape[1], 1)# print meme.dtype# print meme.shapeorig_mask = meme[:,:,3]# print orig_mask.shape# memegray = cv2.cvtColor(orig_mask, cv2.COLOR_BGR2GRAY)ret1, orig_mask = cv2.threshold(orig_mask, 10, 255, cv2.THRESH_BINARY)orig_mask_inv = cv2.bitwise_not(orig_mask)meme = meme[:,:,0:3]origMustacheHeight, origMustacheWidth = meme.shape[:2]roi_gray = img_gray[y:y+h, x:x+w]roi_color = frame[y:y+h, x:x+w]# Detect a nose within the region bounded by each face (the ROI)nose = noseCascade.detectMultiScale(roi_gray)for (nx,ny,nw,nh) in nose:# Un-comment the next line for debug (draw box around the nose)#cv2.rectangle(roi_color,(nx,ny),(nx+nw,ny+nh),(255,0,0),2)# The mustache should be three times the width of the nosemustacheWidth =  20 * nwmustacheHeight = mustacheWidth * origMustacheHeight / origMustacheWidth# Center the mustache on the bottom of the nosex1 = nx - (mustacheWidth/4)x2 = nx + nw + (mustacheWidth/4)y1 = ny + nh - (mustacheHeight/2)y2 = ny + nh + (mustacheHeight/2)# Check for clippingif x1 < 0:x1 = 0if y1 < 0:y1 = 0if x2 > w:x2 = wif y2 > h:y2 = h# Re-calculate the width and height of the mustache imagemustacheWidth = (x2 - x1)mustacheHeight = (y2 - y1)# Re-size the original image and the masks to the mustache sizes# calcualted abovemustache = cv2.resize(meme, (mustacheWidth,mustacheHeight), interpolation = cv2.INTER_AREA)mask = cv2.resize(orig_mask, (mustacheWidth,mustacheHeight), interpolation = cv2.INTER_AREA)mask_inv = cv2.resize(orig_mask_inv, (mustacheWidth,mustacheHeight), interpolation = cv2.INTER_AREA)# take ROI for mustache from background equal to size of mustache imageroi = roi_color[y1:y2, x1:x2]# roi_bg contains the original image only where the mustache is not# in the region that is the size of the mustache.roi_bg = cv2.bitwise_and(roi,roi,mask = mask_inv)# roi_fg contains the image of the mustache only where the mustache isroi_fg = cv2.bitwise_and(mustache,mustache,mask = mask)# join the roi_bg and roi_fgdst = cv2.add(roi_bg,roi_fg)# place the joined image, saved to dst back over the original imageroi_color[y1:y2, x1:x2] = dstbreak#     cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)#     angry, fear, happy, sad, surprise, neutral = predict_emotion(face_image_gray)#     text1 = 'Angry: {}     Fear: {}   Happy: {}'.format(angry, fear, happy)#     text2 = '  Sad: {} Surprise: {} Neutral: {}'.format(sad, surprise, neutral)## cv2.putText(frame, text1, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 0), 3)# cv2.putText(frame, text2, (50, 150), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 0), 3)# Display the resulting framecv2.imshow('Video', frame)if cv2.waitKey(1) & 0xFF == ord('q'):break# When everything is done, release the capturevideo_capture.release()cv2.destroyAllWindows()

需要完整代码以及学长训练好的模型,联系学长获取

4 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

http://www.yayakq.cn/news/633433/

相关文章:

  • 家用电脑网站建设一些简约大气的网站
  • 1999年怎样建立企业网站经济新闻最新消息财经
  • 北京设计网站软件著作权和专利的区别
  • 网站建设具体要求广州市建筑工程有限公司
  • 装修怎么做网站百度指数怎么做
  • 网站专题制作网站下载免费的视频软件
  • 网站备案人授权书wordpress tag_link
  • 小学生做网站微信公众平台官网在哪里打开
  • 曙光建设有限公司网站织梦软件展示网站
  • 沧州兼职网站建设赣州网络推广行业
  • 定制网站建设的释义网站域名备案证明
  • 重庆网站推广大全德宏商城网站建设
  • 智能网站建设平台公司网站建设项目的成本计划
  • 网站建设及维护费算业务宣传费wordpress好用的富文本编辑器
  • 网站注册登录页面设计鹤壁专业做网站多少钱
  • 郑州网站网站建设给别人做网站挣钱吗
  • 投资网站排行新产品开发流程的六个步骤
  • 做网站放哪个科目政务服务 网站 建设方案
  • 贵阳seo网站建设韩国设计教程网站
  • 网站设计工作室公司网站开发名词解释
  • 周口哪里有做网站的如何做好网站建设的关键重点
  • 指定网站建设项目规划书php后台网站开发教程
  • 山西响应式网站平台工业设计属于什么大类
  • 响应式网站的制作网站制作高端设计网站制作
  • 网站 锚点链接怎么做建设网站的定位
  • iis7搭建aspx网站做微信商城网站
  • 郑州营销型网站建设公司用layui做的一个网站模板
  • asp网站建设 文献上海人才网官网还是上海市人才网
  • 查询网站后台登陆地址公司网站设计欣赏
  • 大学网站建设说明书辽宁省住房和城乡建设厅网站进不去