当前位置: 首页 > news >正文

加强本单位政务网站建设宁德seo培训

加强本单位政务网站建设,宁德seo培训,网站的衡量标准,网站建设的调研报告道路裂缝,坑洼,病害数据集 包括无人机视角,摩托车视角,车辆视角 覆盖道路所有问题 一共有八类16000张 1到7依次为: [横向裂缝, 纵向裂缝, 块状裂缝, 龟裂, 坑槽, 修补网状裂缝, 修补裂缝, 修补坑槽] 道路病害(如裂缝、…

道路裂缝,坑洼,病害数据集
包括无人机视角,摩托车视角,车辆视角
覆盖道路所有问题
一共有八类16000张
1到7依次为: ['横向裂缝', '纵向裂缝', '块状裂缝', '龟裂', '坑槽', '修补网状裂缝', '修补裂缝', '修补坑槽']

道路病害(如裂缝、坑洼等)不仅影响行车安全,还会缩短道路使用寿命。传统的道路检查依赖人工巡检,效率低下且容易遗漏。随着无人机、摩托车和车辆视角拍摄技术的发展,自动化的道路病害检测成为可能。本数据集旨在为道路裂缝、坑洼及病害检测提供高质量的标注数据,支持自动化检测系统的开发与应用。

数据集概述:
  • 名称:道路裂缝、坑洼及病害检测数据集
  • 规模:共计16,000张图像
  • 类别:八类道路病害
    • 1:横向裂缝(Transverse Cracks)
    • 2:纵向裂缝(Longitudinal Cracks)
    • 3:块状裂缝(Block Cracks)
    • 4:龟裂(Alligator Cracking)
    • 5:坑槽(Potholes)
    • 6:修补网状裂缝(Mesh Cracking Repair)
    • 7:修补裂缝(Crack Repair)
    • 8:修补坑槽(Pothole Repair)
  • 视角:涵盖无人机视角、摩托车视角和车辆视角
数据集特点:
  1. 全面性:涵盖多种道路病害类型,确保数据集的多样性和实用性。
  2. 高质量标注:每张图像都已详细标注,确保数据的准确性和可靠性。
  3. 适用范围广:支持多种标注格式(VOC、YOLO),方便科研人员和开发者直接使用。
  4. 标准格式:采用广泛使用的标注文件格式,方便导入不同的检测框架。
数据集内容:

  • 横向裂缝(Transverse Cracks):标注了道路上的横向裂缝。
  • 纵向裂缝(Longitudinal Cracks):标注了道路上的纵向裂缝。
  • 块状裂缝(Block Cracks):标注了道路上的块状裂缝。
  • 龟裂(Alligator Cracking):标注了道路上的龟裂。
  • 坑槽(Potholes):标注了道路上的坑槽。
  • 修补网状裂缝(Mesh Cracking Repair):标注了修补过的网状裂缝。
  • 修补裂缝(Crack Repair):标注了修补过的裂缝。
  • 修补坑槽(Pothole Repair):标注了修补过的坑槽。
数据集用途:

  1. 病害检测:可用于训练和评估深度学习模型,特别是在道路裂缝、坑洼及病害检测方面。
  2. 养护管理:帮助实现道路养护的自动化检测,减少人工巡查的工作量。
  3. 科研与教育:为道路裂缝、坑洼及病害检测领域的研究和教学提供丰富的数据支持。
使用场景:
  1. 实时监控:在道路监控系统中,利用该数据集训练的模型可以实时检测道路病害。
  2. 养护规划:在道路养护和修复计划制定中,利用该数据集可以提高检测的准确性和速度。
  3. 生产管理:在道路管理和养护工作中,利用该数据集可以提高工作效率和管理水平。
技术指标:
  • 数据量:共计16,000张图像,涵盖八类道路病害。
  • 数据划分:数据集是否进行了训练集、验证集和测试集的划分,需根据数据集实际内容确定。
  • 标注格式:支持VOC和YOLO格式的标注文件,方便导入不同的检测框架。
  • 标注精度:所有图像均已详细标注,确保数据的准确性和可靠性。
注意事项:
  • 数据隐私:在使用过程中,请确保遵守相关法律法规,保护个人隐私。
  • 数据预处理:在使用前,建议进行一定的数据预处理,如图像归一化等。
获取方式:
  • 下载链接:请访问项目主页获取数据集下载链接。
  • 许可证:请仔细阅读数据集的使用许可协议。
关键代码示例:

以下是关键代码的示例,包括数据加载、模型训练、检测和结果展示。

数据加载(以VOC格式为例):
1import os
2import cv2
3import xml.etree.ElementTree as ET
4import numpy as np
5
6# 数据集路径
7DATASET_PATH = 'path/to/dataset'
8IMAGES_DIR = os.path.join(DATASET_PATH, 'JPEGImages')
9ANNOTATIONS_DIR = os.path.join(DATASET_PATH, 'Annotations')
10
11# 加载数据集
12def load_dataset(directory):
13    images = []
14    annotations = []
15
16    for img_file in os.listdir(IMAGES_DIR):
17        if img_file.endswith('.jpg') or img_file.endswith('.png'):
18            img_path = os.path.join(IMAGES_DIR, img_file)
19            annotation_path = os.path.join(ANNOTATIONS_DIR, img_file.replace('.jpg', '.xml').replace('.png', '.xml'))
20            
21            image = cv2.imread(img_path)
22            tree = ET.parse(annotation_path)
23            root = tree.getroot()
24            
25            objects = []
26            for obj in root.findall('object'):
27                name = obj.find('name').text
28                bbox = obj.find('bndbox')
29                xmin = int(bbox.find('xmin').text)
30                ymin = int(bbox.find('ymin').text)
31                xmax = int(bbox.find('xmax').text)
32                ymax = int(bbox.find('ymax').text)
33                objects.append((name, [xmin, ymin, xmax, ymax]))
34            
35            images.append(image)
36            annotations.append(objects)
37
38    return images, annotations
39
40train_images, train_annotations = load_dataset(os.path.join(DATASET_PATH, 'train'))
41val_images, val_annotations = load_dataset(os.path.join(DATASET_PATH, 'val'))
42test_images, test_annotations = load_dataset(os.path.join(DATASET_PATH, 'test'))
模型训练:
1# 初始化YOLOv8模型
2model = YOLO('yolov8n.pt')
3
4# 转换VOC格式到YOLO格式
5def convert_voc_to_yolo(annotations, image_shape=(640, 640), class_names=['Transverse Cracks', 'Longitudinal Cracks', 'Block Cracks', 'Alligator Cracking', 'Potholes', 'Mesh Cracking Repair', 'Crack Repair', 'Pothole Repair']):
6    yolo_annotations = []
7    class_map = {name: i for i, name in enumerate(class_names)}
8    
9    for ann in annotations:
10        converted = []
11        for name, obj in ann:
12            class_id = class_map[name]
13            x_center = (obj[0] + obj[2]) / 2 / image_shape[1]
14            y_center = (obj[1] + obj[3]) / 2 / image_shape[0]
15            width = (obj[2] - obj[0]) / image_shape[1]
16            height = (obj[3] - obj[1]) / image_shape[0]
17            converted.append([class_id, x_center, y_center, width, height])
18        yolo_annotations.append(converted)
19    return yolo_annotations
20
21# 定义训练参数
22EPOCHS = 100
23BATCH_SIZE = 16
24
25# 转换并训练模型
26train_yolo_annots = convert_voc_to_yolo(train_annotations)
27val_yolo_annots = convert_voc_to_yolo(val_annotations)
28
29results = model.train(data='road_disease_detection.yaml', epochs=EPOCHS, batch=BATCH_SIZE)
模型检测:
1# 加载训练好的模型
2model = YOLO('best.pt')
3
4# 检测图像
5def detect_road_diseases(image):
6    results = model.predict(image)
7    for result in results:
8        boxes = result.boxes
9        for box in boxes:
10            x1, y1, x2, y2 = box.xyxy[0]
11            conf = box.conf
12            class_id = box.cls
13            
14            # 显示结果
15            cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
16            class_name = ['Transverse Cracks', 'Longitudinal Cracks', 'Block Cracks', 'Alligator Cracking', 'Potholes', 'Mesh Cracking Repair', 'Crack Repair', 'Pothole Repair'][class_id]
17            cv2.putText(image, f'{class_name}, Conf: {conf:.2f}', (int(x1), int(y1)-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
18    
19    return image
20
21# 测试图像
22test_image = cv2.imread('path/to/test_image.jpg')
23result_image = detect_road_diseases(test_image)
24cv2.imshow('Detected Road Diseases', result_image)
25cv2.waitKey(0)
26cv2.destroyAllWindows()
配置文件 road_disease_detection.yaml
1train: path/to/train/images
2val: path/to/val/images
3test: path/to/test/images
4
5nc: 8  # Number of classes
6names: ['Transverse Cracks', 'Longitudinal Cracks', 'Block Cracks', 'Alligator Cracking', 'Potholes', 'Mesh Cracking Repair', 'Crack Repair', 'Pothole Repair']  # Class names
7
8# Training parameters
9batch_size: 16
10epochs: 100
11img_size: [640, 640]  # Image size
使用指南:
  1. 数据准备:确保数据集路径正确,并且数据集已准备好。
  2. 模型训练:运行训练脚本,等待训练完成。
  3. 模型检测:使用训练好的模型进行检测,并查看检测结果。
结语:

本数据集提供了一个高质量的道路裂缝、坑洼及病害检测数据集,支持自动化病害检测、养护管理等多个应用场景。通过利用该数据集训练的模型,可以提高道路病害检测的效率和准确性。

http://www.yayakq.cn/news/280259/

相关文章:

  • 网站详情页用哪个软件做企业网站 价格
  • 肥城网站建设公司西安最新活动轨迹
  • 免费制作模板网站做一个app大概需要多少费用
  • 济南定制网站制作公司网页设计图片为980是参考
  • 做设计有哪些免费网站wordpress网站密码
  • 微网站建设第一步是进行什么的设置网站设计价钱
  • iis7.5 添加网站网站推广具体内容简要说明
  • php网站开发和部署虚拟主机管理系统源码
  • 广州哪家公司做网站西安网约车
  • 学校二级网站建设自查情况wordpress手机模板插件
  • 怎么让别人看到自己做的网站毕业设计做网站low
  • 浙江网站seo一个网站 两个域名
  • 信息型网站制造业生产管理系统
  • 江西网站备案商城网站开发报价方案
  • 小企业网站服务器h5商城网站模板下载
  • 免费网站平台推荐金华市建设技工学校网站
  • phpcmsv9中英文网站汕头网站
  • wordpress专题页面企业网站做优化
  • 科技感网页设计徐州百度seo排名优化
  • 做网站好找工作吗搜索引擎营销策划方案
  • 国内做网站的顶尖公司内蒙网络_网站建设
  • 新宾区网站建设吉林市做网站公司
  • 做商品推广有那些网站申请备案网站首页
  • 有没有做门面设计的网站wordpress 页面调用
  • 移动端网站的重要性用vs2010做网站教程
  • 东莞企业网站推广wordpress发布文章_发布
  • windows服务器怎么建设网站做网站优化的关键词怎么设置
  • 专业型网站网站做音乐 交流网站
  • 做视频网站视频用什么插件吗cn结尾的网站 做外贸
  • 如何用网站模板房产达人