当前位置: 首页 > news >正文

网站商城建设费用上海做推

网站商城建设费用,上海做推,软件外包公司名单,12网站免费建站类型转换 传统方法astype使用value_counts统计通过apply替换并使用astype转换 pd.to_numericx对连续变量进行转化⭐参数:返回值:示例代码: isnull不会检查空字符串 数据准备 有一组数据信息如下,其中主要将TotalCharges、MonthlyC…

类型转换

    • 传统方法astype
      • 使用value_counts统计
      • 通过apply替换并使用astype转换
    • pd.to_numericx对连续变量进行转化⭐
      • 参数:
      • 返回值:
      • 示例代码:
    • isnull不会检查空字符串

  • 数据准备
    有一组数据信息如下,其中主要将TotalChargesMonthlyCharges两列进行类型转换,虽然通过函数info查看到类型已经是float64 和int64了,但是其中存在缺失值,我们的目的是找出缺失值 并填补进行类型转换
tcc.info()

在这里插入图片描述
在这里插入图片描述

传统方法astype

def find_index(data_col, val):"""查询某值在某列中第一次出现位置的索引,没有则返回-1:param data_col: 查询的列:param val: 具体取值"""val_list = [val]if data_col.isin(val_list).sum() == 0:index = -1else:index = data_col.isin(val_list).idxmax()# idxmax 方法将返回第一个匹配值的索引return index
# 查看空格第一次出现在哪一列的哪个位置:
for col in numeric_cols:print(find_index(tcc[col], ' '))

-1
488

# -1  代表月费用是没有问题的     488  代表总费用是有问题  且是空值
tcc["TotalCharges"][480:490]

在这里插入图片描述

# 确认是空值
tcc["TotalCharges"].iloc[488]

’ ’ 【有个空格的哦】

使用value_counts统计

tcc["TotalCharges"].value_counts()

在这里插入图片描述

通过apply替换并使用astype转换

tcc['TotalCharges']=tcc['TotalCharges'].apply(lambda x: x if x != ' ' else np.nan).astype(float)
tcc['MonthlyCharges']=tcc['MonthlyCharges'].astype(float)

根据上述方法,将空字符串替换为NaN,这就方便使用isnull函数进行后续处理

def missing (df):"""计算每一列的缺失值及占比"""missing_number = df.isnull().sum().sort_values(ascending=False)              # 每一列的缺失值求和后降序排序                  missing_percent = (df.isnull().sum()/df.isnull().count()).sort_values(ascending=False)          # 每一列缺失值占比missing_values = pd.concat([missing_number, missing_percent], axis=1, keys=['Missing_Number', 'Missing_Percent'])      # 合并为一个DataFramereturn missing_valuesmissing(tcc[numeric_cols])

在这里插入图片描述

tcc["TotalCharges"].isnull().sum()

11

# 输出缺失值位置对应的索引
tcc.index[tcc["TotalCharges"].isnull()].tolist()

[488, 753, 936, 1082, 1340, 3331, 3826, 4380, 5218, 6670, 6754]

pd.to_numericx对连续变量进行转化⭐

在这里插入图片描述

pd.to_numericpandas 库中的一个函数,用于将参数转换为数字类型。这个函数的默认返回类型是 float64int64,具体取决于提供的数据。以下是 pd.to_numeric 的一些关键用法和参数:

参数:

  • arg:要转换的参数,可以是标量、列表、元组、一维数组或 Series
  • errors:{‘ignore’, ‘raise’, ‘coerce’},默认为 ‘raise’。
    • 如果设置为 ‘raise’,则无效的解析会引发异常。
    • 如果设置为 ‘coerce’,则无效的解析会被设置为 NaN
    • 如果设置为 ‘ignore’,则无效的解析会返回输入的原始值。注意,‘ignore’ 在版本 2.2 中已被弃用,建议显式捕获异常。
  • downcast:默认为 None。
    • 可以是 ‘integer’、‘signed’、‘unsigned’ 或 ‘float’。
    • 如果不为 None,并且数据已成功转换为数值类型,则根据规则将结果数据转换为可能的最小数值类型。
  • dtype_backend:{‘numpy_nullable’, ‘pyarrow’},默认为 ‘numpy_nullable’。
    • ‘numpy_nullable’:返回支持空值的 DataFrame(默认)。
    • ‘pyarrow’:返回基于 pyarrow 的可空 ArrowDtype DataFrame

返回值:

  • 如果解析成功,返回数字。返回类型取决于输入。如果是 Series,则返回 Series;否则返回 ndarray

示例代码:

# 将 Series 转换为数值类型
s = pd.Series(['1.0', '2', -3])
pd.to_numeric(s)  # 返回 float64 类型

在这里插入图片描述

# 使用 downcast 参数将数值类型转换为更小的数值类型
pd.to_numeric(s, downcast='float')  # 返回 float32 类型

在这里插入图片描述

# 使用 errors 参数处理非数值数据
s = pd.Series([None, ' ', np.nan,'2', -3])
pd.to_numeric(s, errors='coerce')  # 非数值数据被替换为 NaN

在这里插入图片描述

pd.to_numeric 是处理数据转换时非常有用的工具,尤其是在数据清洗和预处理阶段,它可以帮助确保数据类型的一致性。更多详细信息和用法可以参考 pandas 官方文档 。

isnull不会检查空字符串

  • 没有空字符
s = pd.Series([None, np.nan, '2', -3])
s

在这里插入图片描述

s.isnull().sum()

2

  • 空字符串存在
t = pd.Series([None, ' ', '2', -3])
t

在这里插入图片描述

t.isnull()

0 True
1 False # 空字符当成有数据处理了
2 False
3 False
dtype: bool

t.isnull().sum()

1

http://www.yayakq.cn/news/676830/

相关文章:

  • 网站租用 凡freenom怎么做网站
  • 怎样搭建微网站网站图标 psd
  • 南阳网站排名优化可以自建网站吗
  • 淘宝客网站怎么做优化wordpress管理员评论在哪儿设置
  • 揭阳网站建设解决方案wordpress修改网站名称
  • 网站建设古典风格七台河新闻在线直播
  • 东莞免费建站在线咨询网站建设优化公司哪家好
  • 苏州做网站公司 速选苏州聚尚网络wordpress 显示 当前位置
  • 网站界面ui设计国家开放大学答案wordpress更换主题失败
  • 网站优化年报告正邦集团招聘
  • 网站索引量突然下降网站开发有名的公司
  • 邢台做移动网站的公司网页源代码查找快捷键
  • 公司的网站建设费用算什么费用设计在线好看
  • 开发手机网站的步骤微交互和微动效网页界面设计
  • wordpress+游戏网站湖南高端网站制作公
  • 全国网站建设平面设计培训多少钱 贵吗
  • 做网站可以做什么青岛的做网站公司
  • 电子商务网站的建设与流程大宗商品交易平台排名
  • 做网站多少钱特惠西宁君博s网站锚点链接怎么做
  • 网站建设业务员招聘图片网站的优化
  • 科技部网站方案做装修行业营销型网站
  • 有没有做羞羞的网站网站花瓣飘落的效果怎么做
  • 平谷手机网站建设自己怎么建购物网站
  • 如何判断网站是用织梦做的网站静态界面挖取
  • 网站备案期间打不开网站免费模版代码
  • google网站地图怎么样做网站代
  • 网站建设服务器在国外如何打击宁波网站建设报价多少
  • wordpress翻墙seo搜外
  • 经营一个网站要怎么做cms建站系统介绍
  • 做网站搜爬闪数字展厅展馆解决专家