当前位置: 首页 > news >正文

怎么在手机上做微电影网站Wordpress已有数据库表

怎么在手机上做微电影网站,Wordpress已有数据库表,gta5买房网站建设中,网站建设与管理就业去向这里主要是前一篇博文的后续内容,简单回顾一下:本文选取了n/s/m三款不同量级的模型来依次构建训练模型,所有的参数保持同样的设置,之后探索在不同剪枝处理操作下的性能影响。 在上一篇博文中保持30的剪枝程度得到的效果还是比较理…

这里主要是前一篇博文的后续内容,简单回顾一下:本文选取了n/s/m三款不同量级的模型来依次构建训练模型,所有的参数保持同样的设置,之后探索在不同剪枝处理操作下的性能影响。

在上一篇博文中保持30的剪枝程度得到的效果还是比较理想的。这里进行的是分别进行60和90两种不同程度的剪枝,之后对其进行微调训练开发,对比分析模型性能。

先看60的结果:

【yolov5n_pruning】

 【yolov5s_pruning】

【yolov5m_pruning】

 三款参数量级的模型对比评估结果详情如下所示:

【yolov5n_pruning】
Validating runs/train/yolov5n_pruning_0.60/weights/best.pt...
Fusing layers... 
YOLOv5n summary: 157 layers, 932592 parameters, 0 gradients, 2.1 GFLOPsClass     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:01<00:00,  2.79it/s]                      all         40        100      0.627       0.42      0.482      0.153
Results saved to runs/train/yolov5n_pruning_0.60【yolov5s_pruning】
Validating runs/train/yolov5s_pruning_0.60/weights/best.pt...
Fusing layers... 
YOLOv5s summary: 166 layers, 4637807 parameters, 0 gradientsClass     Images  Instances          P          R      mAP50   mAP50-95: 100%|??????????| 5/5 [00:01<00:00,  2.51it/s]                      all         40        100      0.488        0.5      0.481      0.183
Results saved to runs/train/yolov5s_pruning_0.60【yolov5m_pruning】
Validating runs/train/yolov5m_pruning_0.60/weights/best.pt...
Fusing layers... 
YOLOv5m summary: 212 layers, 11711883 parameters, 0 gradients, 25.4 GFLOPsClass     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:01<00:00,  2.77it/s]                      all         40        100      0.633      0.708      0.672      0.256
Results saved to runs/train/yolov5m_pruning_0.60

综合对比不难发现:在60%的剪枝程度处理下,各款模型都发现了明显的精度下降的问题。为了直观对比分析,我对其进行了可视化,如下所示:

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。


【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。


【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

 【loss曲线】

 接下来是剪枝度为90的最后一组实验。

【yolov5n_pruning】

 【yolov5s_pruning】

 【yolov5m_pruning】

 三款不同参数量级在剪枝度90的情况下,模型评估结果对比如下所示:

【yolov5n_pruning】
Validating runs/train/yolov5n_pruning_0.90/weights/best.pt...
Fusing layers... 
YOLOv5n summary: 157 layers, 710530 parameters, 0 gradients, 1.4 GFLOPsClass     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 5/5 [00:01<00:00,  3.53it/s]                      all         40        100      0.267       0.23      0.189     0.0464
Results saved to runs/train/yolov5n_pruning_0.90【yolov5s_pruning】
Validating runs/train/yolov5s_pruning_0.90/weights/best.pt...
Fusing layers... 
YOLOv5s summary: 166 layers, 3920903 parameters, 0 gradientsClass     Images  Instances          P          R      mAP50   mAP50-95: 100%|??????????| 5/5 [00:01<00:00,  3.59it/s]                      all         40        100      0.204       0.27      0.175     0.0635
Results saved to runs/train/yolov5s_pruning_0.90【yolov5m_pruning】
Validating runs/train/yolov5m_pruning_0.90/weights/best.pt...
Fusing layers... 
YOLOv5m summary: 212 layers, 8908815 parameters, 0 gradients, 17.7 GFLOPsClass     Images  Instances          P          R      mAP50   mAP50-95: 100%|??????????| 5/5 [00:01<00:00,  3.21it/s]                      all         40        100      0.213       0.35      0.221      0.078
Results saved to runs/train/yolov5m_pruning_0.90

同样为了直观对比分析,我对其也进行了对比可视化展示,如下所示:

【F1值】

【loss曲线】

 【Precision】

 【Recall】

 90的话结果已经变差了很多了。

接下来我整体对比一下30/60/90这三组剪枝实验结果,如下所示:

【F1值】

 【loss】

 【Precision】

 【Recall】

 从对比可视化曲线上面不难看出:剪枝三组实验效果依次递降。

精度和速度本身就是一堆需要平衡的指标,在算力条件允许的情况下尽量保持较低程度的剪枝水平会带来不错的精度体验。

最后我们来直观体验感受下不同剪枝水平下模型体量的差异:

 后面有时间再继续实验分析吧。

http://www.yayakq.cn/news/853575/

相关文章:

  • 传统外贸网站的seo运用网站定制开发哪家厉害
  • 做网站的作文建设流网站项目
  • 慈溪seo东莞网络优化公司
  • 广州外贸营销型网站建设网站高端设计公司哪家好
  • 手表网站登录页背景图建网站过程
  • 建设执业注册中心网站动漫双人互动模板
  • 个人建设网站教程苏州产品网站建设
  • 仿站网站漯河做网站的店
  • 孟村网站建设公司医疗网站建设管理
  • 一般建设网站大概需要多少钱做新闻源网站采集站赚钱
  • 2018春节放假安排 网站建设发布自己的做家教的网站
  • 做科技申报看什么网站公司企业网站开发
  • 北京建设网站的公司哪家好什么叫网站地图
  • 寄生虫网站排名代做医疗手机网站建设
  • 企业怎么做网站推广wordpress调取某页面
  • 网站开发 方案概要廊坊网站建设总部在哪里
  • 建设培训学校网站pc网站 手机网站 微网站
  • 淘宝客网站需要备案外贸soho做网站
  • 河南平安建设网站深圳 网站开发
  • 网站建设与设计致谢做微信头图的网站
  • 主动创新网站内容建设北京seo费用是多少
  • 建站网站方法软件开发技术有哪些
  • 微网站模板怎么做网站建设二团队
  • 门户网站改版如何解压缩wordpress
  • seo建站收费地震网站推广报价
  • 小型企业的网站建设论文福建建设工程招投标信息网
  • 蓝色扁平化网站天津通用网站建设方案
  • 开个个人网站怎么做网站的seo排名知乎
  • 网站开发技术最新技术网件
  • 织梦网站模板如何安装网站进度表