当前位置: 首页 > news >正文

办公内网网站建设标准网站后台怎么换图片

办公内网网站建设标准,网站后台怎么换图片,搜索引擎优化,网站开发总体流程图Logistic回归模型: 适用于二分类或多分类问题,样本特征是数值型(否则需要转换为数值型) 策略:极大似然估计 算法:随机梯度 或 BFGS算法(改进的拟牛顿法) 线性回归表达式&#xf…

Logistic回归模型:

适用于二分类或多分类问题,样本特征是数值型(否则需要转换为数值型)

策略:极大似然估计

算法:随机梯度 或 BFGS算法(改进的拟牛顿法)

线性回归表达式:

y_i = w\cdot x_i+b

 式子中x_i = (x_i^{(1)},x_i^{(2)},...,x_i^{(N)});w为N个特征权重组成的向量,即w=(w_1,w_2,...,w_N);b是第i个样本对应的偏置常数。

Sigmoid函数:

g(z)=\frac{1}{1+e^{-z}}

 

对数概率 

y=log(\frac{p}{1-p})

p = \frac{e^y}{1+e^y}

p=\frac{e^{wx+b}}{1+e^{wx+b}} 

Logistic 回归模型:

 p(y=1|x)=\frac{e^{wx+b}}{1+e^{wx+b}}p(y=0|x)=\frac{1}{1+e^{wx+b}}

构造似然函数:

log(L)=\sum_{i=1}^{N}y_i(wx_i+b)+log(1-p_i)

 log(L)=\sum_{i=1}^{N}y_i(wx_i+b)-log(1+e^{wx_i+b})

\hat{w},\hat{b}=argmax_{w,b}\sum_{i=1}^{N}y_i(wx_i+b)-log(1+e^{wx_i+b})

Logistic回归优化:梯度下降,分别对权重w,偏置b求导数:

\frac{\partial }{\partial w}lnL(w,b)=\frac{\partial }{\partial w}\sum_{i=1}^{N}y_i(wx_i+b)-ln(1+e^{wx_i+b})

\frac{\partial }{\partial b}lnL(w,b)=\frac{\partial }{\partial b}\sum_{i=1}^{N}y_i(wx_i+b)-ln(1+e^{wx_i+b})

综上,可归纳Logistic回归的过程:

实例:鸢尾花数据集划分: 

class Logistic_Regression:def __init__(self):self.coef_ = Noneself.intercept_ = Noneself._theta = Nonedef _sigmoid(self,t):return 1./(1.+np.exp(-t)) def fit(self,X_train,y_train,eta = 0.01, n_iters =1e4):def J(theta,X_b,y):y_hat = self._sigmoid(X_b.dot(theta))try:return -np.sum(y*np.log(y_hat)  +(1-y)*np.log(1-y_hat)  )except:return float('inf')def dJ(theta,X_b,y):return X_b.T.dot(self._sigmoid(X_b.dot(theta))-y)def gradient_descent(initia_theta,X_b,y, eta,n_iters =1e4,epsilon =1e-8 ):theta = initia_thetacur_iter = 0while cur_iter < n_iters:gradient = dJ(theta,X_b, y)last_theta = thetatheta = theta - eta * gradientif (abs(J(theta,X_b, y)-J(last_theta,X_b, y)) < epsilon):breakcur_iter += 1return thetaX_b = np.hstack([np.ones(len(X_train)).reshape(-1,1),X_train])initia_theta = np.zeros(X_b.shape[1])self._theta = gradient_descent(initia_theta,X_b,y_train,eta,n_iters)self.intercept_ = self._theta[0]self.coef_ = self._theta[1:]return selfdef predict_proba(self,X_predict):X_b = np.hstack([np.ones(len(X_predict)).reshape(-1,1),X_predict])return self._sigmoid(X_b.dot(self._theta))def predict(self,X_predict):proba = self.predict_proba(X_predict)return np.array(proba >= 0.5,dtype = 'int')def score(self,X_test,y_test):y_predict = self.predict(X_test)return accuracy_score(y_test, y_predict)def __repr__(self):return "LogisticRegression()"

可视化划分:

from sklearn import datasets
iris = datasets.load_iris()
X = iris.data
y = iris.target
X = X[y<2,:2]
y = y[y<2]
plot_decision_boundary(log_reg,X_test)
plt.scatter(X_test[y_test==0,0],X_test[y_test==0,1])
plt.scatter(X_test[y_test==1,0],X_test[y_test==1,1])
plt.show()

总结 

注意:虽然 Logistic 回归的名字叫作回归,但其实它是一种分类方法!!!

优点

  1. 逻辑斯蒂回归模型基于简单的线性函数,易于理解和实现。
  2. Logistic 回归模型对一般的分类问题都可使用。
  3. Logistic 回归模型不仅可以预测出样本类别,还可以得到预测为某类别的近似概率,这在许多需要利用概率辅助决策的任务中比较实用。
  4. Logistic 回归模型中使用的对数损失函数是任意阶可导的凸函数,有很好的数学性质,可避免局部最小值问题。

缺点

  1. Logis ic 回归模型本质上还是种线性模型,只能做线性分类,不适合处理非线性的情况,一般需要结合较多的人工特征处理使用。
  2. Logistic 回归对正负样本的分布比较敏感,所以要注意样本的平衡性,即y=1的样本数不能太少。
  3. 模型不能自动捕捉特征之间的交互作用,需要手动进行特征工程。
http://www.yayakq.cn/news/884217/

相关文章:

  • 什么网站可以做汽车国际贸易最详细的wordpress教程
  • 做网站延期交付了网站内页全是404
  • 用别人网站名做长尾关键词机器人学做玩 网站
  • wordpress文章页面宽度网站优化的推广
  • 怎么建立一个网站存照片视频的链接wordpress apache2
  • 如果网站打开非常缓慢企业网站模板2016成套
  • 旅游美食网站模板著名室内设计网站大全
  • 网站打广告自助建站网站
  • 哈尔滨网站建设公司有哪些设计网站客户体验
  • 服务器网站绑定域名怎么免费建商城网站吗
  • 亚马逊电子商务网站的建设移动网上营业厅官网
  • 厦门企业制作网站浏览器下载安装2023版本
  • 目前最好的旅游网站动漫设计属于什么大类
  • 深圳网站设计公司排名北京最新消息发布
  • 做一手楼房的网站什么是理财北京网站建设公司
  • 北京建设网站公司网站国内网页设计公司前十名
  • python 网站开发流程图网站服务器端口号是什么
  • wordpress 网站地图类江苏网站备案暂住证
  • 手机 网站编辑器营销网站搭建建议
  • 中小企业网站建设信息核酸造假7人枪毙
  • 高端品牌网站有哪些长沙装修公司口碑比较好的
  • 微博带动网站做排名wordpress 展示微博
  • 做酒店需要怎么上网站wordpress参考书
  • 知名企业网站人才招聘情况台州临海市建设局网站
  • wordpress全站cdn sslwordpress trego
  • 自动做PPT的网站网址经营是什么
  • 小贷做网站怎样制作微信小程序
  • 怎么做网站营销唱片公司网站模板
  • 分类信息网站开发浙江建设网站首页
  • 合肥市做外贸网站的公司wordpress altair