当前位置: 首页 > news >正文

松滋市住房和城乡建设局网站网站建设 事业单位 安全

松滋市住房和城乡建设局网站,网站建设 事业单位 安全,网站建设最基础的是什么意思,茶叶官网网站建设人生苦短,快学Python! 今天我们进行一次实战案例分享,以全球预期寿命与人均 GPD数据为例,写一篇 Python 中漂亮散点图的快速指南。除了正常的数据清洗/处理、还会进行简单的统计分析,实现数据处理-统计分析-可视化一条…

人生苦短,快学Python!

今天我们进行一次实战案例分享,以全球预期寿命与人均 GPD数据为例,写一篇 Python 中漂亮散点图的快速指南。除了正常的数据清洗/处理、还会进行简单的统计分析,实现数据处理-统计分析-可视化一条龙。

你会发现,用 Python 画如此漂亮的专业插图 ,So easy!

数据处理

所用数据:全球预期寿命与人均 GPD数据(已校正通货膨胀和跨国价格差异)

数据来源:https://ourworldindata.org/

本文所用数据和代码已打包,获取方式见文末。

导入数据:

import pandas as pdexpectancy_data = pd.read_csv("life-expectancy-vs-gdp-per-capita.csv")# 为方便起见,重命名列
expectancy_data.rename(columns={"Entity":"Country", "Life expectancy at birth (historical)": "Expectancy","GDP per capita": "GDP", "Population (historical estimates)": "Population"}, inplace=True)
expectancy_data

输出:

该数据表中的最新数据是2021年,但由于“均国内生产总值”这列数据只有道2018年的,所以我们本文便以2018年的数据为基础进行分析和可视化。同时,由于我们无法对缺失值进行分析,注意删除缺失值。

GDP_data = expectancy_data[~expectancy_data["GDP"].isna()]
GDP_data = GDP_data[GDP_data["Year"] == 2018]
GDP_data = GDP_data[GDP_data["Country"] != "World"]
GDP_data

输出:

这样我们便完成了最基本的数据处理工作。

可视化

今天的可视化还会用到seaborn,它是一个调用 matplotlib 的统计绘图库

(https://github.com/mwaskom/seaborn)

导入所需Python库:

import numpy as np 
import seaborn as sns
import matplotlib.pyplot as plt 
from matplotlib.lines import Line2D
import matplotlib.patches as mpatchessns.set_style('darkgrid', {'font.sans-serif': ['simhei','FangSong']})

注意,上述代码最后一行是为了解决中文乱码。

接下来我们便可以使用Matplotlib+seaborn制作漂亮的散点图,其中重要的一步是我们将Population列缩放一百万倍并乘以 2,这可以在绘制散点图时控制点的大小,人口越多,点越大。此外,我们还可以注释人口密度高的点,我们可以使用该plt.annotate()方法来完成。

df_new = pd.DataFrame(imputted_data, columns=["Expectancy", "GDP", "Population"])
df_new["Country"] = GDP_data.Country.tolist()
df_new = df_new[["Country", "Expectancy", "GDP", "Population"]]
for col in df_new.columns: if col != "Country": df_new[col] = df_new[col].apply(lambda x: round(x, 3))
df_country = df_new.groupby("Country").mean().reset_index()
df_country = df_country[["Country", "Expectancy", "GDP", "Population"]]
country = df_country["Country"]
GDP = df_country["GDP"]
life_exp = df_country["Expectancy"]
factor = 1000000
population = (df_country["Population"]/factor)*2
plt.figure(figsize=(15, 8)) 
plt.scatter(GDP, life_exp, s = population, alpha=0.9)
df_high_pop = df_country[df_country["Population"] >= 100000000]
for row in df_high_pop.to_dict(orient="records"): plt.annotate(row["Country"], (row["GDP"], row["Expectancy"]+0.3), fontsize=10)
plt.xscale('log') 
plt.xlabel('人均国内生产总值(美元)(对数尺度)') 
plt.ylabel('预期寿命[以年计]') 
plt.title('全球GDP与预期寿命(2018)',fontweight="bold")
plt.show() 

输出结果:

接下来还可以继续优化我们的散点图。比如在我们的数据中对每个国家/地区的人口密度点进行颜色编码,然后根据人数分配不同的颜色;

此外,我们还可以使用plt.legend()增加图例,如下图所示。

回归

进一步优化:基于KNN算法的新方法使得我们现在可以更便捷地处理缺失值,并且与直接用均值、中位数相比更为可靠。利用“近朱者赤”的KNN算法原理,这种插补方法借助其他特征的分布来对目标特征进行缺失值填充。

# sklearn 
from sklearn.impute import KNNImputer 
from sklearn.linear_model import ElasticNetCVimputer = KNNImputer(n_neighbors=3) 
imputted_data = imputer.fit_transform(df[["Expectancy", "GDP", "Population"]]) 

我们另外还想在散点图上画一条非常漂亮的线,用于帮助我们提供一种快速评估各个国家相对于总体趋势的状况的方法。我们可以使用Scikit-learn中的ElasticNet,它是一个使用 L1 和 L2 正则化训练的线性回归模型。它是 LASSO 和岭回归技术的混合体,因此它也非常适合显示严重多重共线性(特征彼此高度相关)的模型。

部分代码(完整下载见文末):

if regression: reg = ElasticNetCV(cv=5, random_state=0)X, y = np.array(GDP).reshape(-1, 1), life_expreg.fit(X,y) y_pred = reg.predict(X) reg_data = pd.DataFrame(X, columns=["X"]) reg_data["y_pred"] = y_pred reg_data = reg_data.sort_values(by="X").reset_index().drop("index", axis=1)reg_data = reg_data[reg_data["y_pred"] <= 90]

使用训练好的模型,绘制一条拟合曲线:

人生苦短,快学Python!

如果喜欢今天分享的文章,别忘了给我们点赞支持一下!

大家如果本文涉及的代码感兴趣,可以点击下方卡片,关注公众号【朱小五】(非本号)后台回复“花卉”即可获取对应【图片+完整代码】文件。


最近我花了两年写的新书已经上市,也算是我在CSDN博客分享Python知识3年的一个总结!

《快学Python:自动化办公轻松实战》点击蓝字查看书籍详情,感谢支持

http://www.yayakq.cn/news/922935/

相关文章:

  • 网站费用估算上百度首页
  • 网站建设意见反馈表唐山建设网站公司
  • 谷德设计网站菏泽住房和城乡建设局网站
  • 企业网站的布局类型网站建设驻地开发合同
  • 成都网站建设推来客wordpress与thinkphp
  • 巨鹿网站建设多少钱wordpress蒸汽波主题
  • 宁波建站平台建设单位网站需求报告
  • 深圳网站开发公司哪家好如何做网站推广达到好的效果
  • 企业网站推广方法实验报告房产信息管理系统
  • 做网站前必须设计原型吗wordpress底部黑色的版权修改
  • net网站开发 兼职开发安卓应用
  • 两当网站建设深圳网站制作公司兴田德润电话多少
  • 网站开发技术交流群沈阳无痛人流
  • 四川省住房与城乡建设厅网站官网马克飞象 wordpress
  • 国外ui设计网站wordpress 注销按钮
  • 学些网站制作呼和浩特企业网站
  • 做地方门户网站如何做wordpress淘宝客主题破解版
  • 企石网站建设公司中国工程网亿美
  • 网站地图用法怎么用外网校内网站做英语
  • 有专业做网站优化的吗rails网站开发
  • 网站移动端开发公司做地方门户网站的资质
  • 未成年人做网站中国建筑网官网防水证书查询
  • 企业网站建设在国内现状免费购物商城网站建设
  • 免费可商用的素材网站专门做塑胶原料副牌网站
  • 哈尔滨做网站seo的南京seo新浪
  • 山西省网站备案要多久网站设计模式
  • 宣传类的网站有哪些哈尔滨云建站模板
  • 一级a做爰片免费网站国语版的吴江做招聘的网站
  • 襄阳网站建设xytzg企业园林设计网站模板
  • 企业网站建设与管理期末考试网站当电话线