当前位置: 首页 > news >正文

怎么把网页放到网站上杭州品牌推广

怎么把网页放到网站上,杭州品牌推广,重庆多个区划定风险区,无忧seo博客1 传统RNN模型与LSTM import torch import torch.nn as nntorch.manual_seed(6)# todo:基础RNN模型 def dem01():参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3&#xff1a…

1 传统RNN模型与LSTM

import torch
import torch.nn as nntorch.manual_seed(6)# todo:基础RNN模型
def dem01():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.RNN(5, 6, 1)'''参数1:sequence_length 每个样本的句子长度参数2:batch_size 每个批次的样本数量参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(1, 3, 5)'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''h0 = torch.randn(1, 3, 6)output, hn = rnn(input, h0)print(f'output {output}')print(f'hn {hn}')print(f'RNN模型 {rnn}')# todo:增加输入的sequence_length
def dem02():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.RNN(5, 6, 1)'''参数1:sequence_length 每个样本的句子长度参数2:batch_size 每个批次的样本数量参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(4, 3, 5)'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''h0 = torch.randn(1, 3, 6)output, hn = rnn(input, h0)print(f'output {output}')print(f'hn {hn}')print(f'RNN模型 {rnn}')# todo:增加隐藏层的个数
def dem03():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.RNN(5, 6, 2)'''参数1:sequence_length 每个样本的句子长度参数2:batch_size 每个批次的样本数量参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(4, 3, 5)'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''h0 = torch.randn(2, 3, 6)output, hn = rnn(input, h0)print(f'output {output}')print(f'hn {hn}')print(f'RNN模型 {rnn}')# todo:一个一个地向模型输入单词-全零初始化
def dem04_1():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.RNN(5, 6, 1)'''参数1:sequence_length 每个样本的句子长度参数2:batch_size 每个批次的样本数量参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(4, 1, 5)print(f'input {input}')'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''# 每个样本一次性输入神经网络hn = torch.zeros(1, 1, 6)print(f'hn1 {hn}')output, hn = rnn(input, hn)print(f'output1 {output}')print(f'hn1 {hn}')print(f'RNN模型1 {rnn}')print('*' * 80)# 每个样本逐词送入神经网络hn = torch.zeros(1, 1, 6)print(f'hn2 {hn}')for i in range(4):tmp = input[i][0]print(f'tmp.shape {tmp.shape}')output, hn = rnn(tmp.unsqueeze(0).unsqueeze(0), hn)print(f'{i}-output {output}')print(f'{i}-hn {hn}')# todo:一个一个地向模型输入单词-全一初始化
def dem04_2():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.RNN(5, 6, 1)'''参数1:sequence_length 每个样本的句子长度参数2:batch_size 每个批次的样本数量参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(4, 1, 5)print(f'input {input}')'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''# 每个样本一次性输入神经网络hn = torch.ones(1, 1, 6)print(f'hn1 {hn}')output, hn = rnn(input, hn)print(f'output1 {output}')print(f'hn1 {hn}')print(f'RNN模型1 {rnn}')print('*' * 80)# 每个样本逐词送入神经网络hn = torch.ones(1, 1, 6)print(f'hn2 {hn}')for i in range(4):tmp = input[i][0]print(f'tmp.shape {tmp.shape}')output, hn = rnn(tmp.unsqueeze(0).unsqueeze(0), hn)print(f'{i}-output {output}')print(f'{i}-hn {hn}')# todo:一个一个地向模型输入单词-随机初始化
def dem04_3():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.RNN(5, 6, 1)'''参数1:sequence_length 每个样本的句子长度参数2:batch_size 每个批次的样本数量参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(4, 1, 5)print(f'input {input}')'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''# 每个样本一次性输入神经网络hn = torch.randn(1, 1, 6)print(f'hn1 {hn}')output, hn = rnn(input, hn)print(f'output1 {output}')print(f'hn1 {hn}')print(f'RNN模型1 {rnn}')print('*' * 80)# 每个样本逐词送入神经网络hn = torch.randn(1, 1, 6)print(f'hn2 {hn}')for i in range(4):tmp = input[i][0]print(f'tmp.shape {tmp.shape}')output, hn = rnn(tmp.unsqueeze(0).unsqueeze(0), hn)print(f'{i}-output {output}')print(f'{i}-hn {hn}')# todo:设置batch_first=True
def dem05():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.RNN(5, 6, 1, batch_first=True)'''参数1:batch_size 每个批次的样本数量参数2:sequence_length 每个样本的句子长度参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(3, 4, 5)'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''h0 = torch.randn(1, 3, 6)output, hn = rnn(input, h0)print(f'output {output}')print(f'hn {hn}')print(f'RNN模型 {rnn}')# todo:基础LSTM模型
def dem06_1():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.LSTM(5, 6, 2)'''参数1:batch_size 每个批次的样本数量参数2:sequence_length 每个样本的句子长度参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(1, 3, 5)'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''h0 = torch.randn(2, 3, 6)'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''c0 = torch.randn(2, 3, 6)output, (hn, cn) = rnn(input, (h0, c0))print(f'output {output}')print(f'hn {hn}')print(f'cn {cn}')# todo:双向LSTM模型
def dem06_2():'''参数1:input_size 每个词的词向量维度(输入层神经元的个数)参数2:hidden_size 隐藏层神经元的个数参数3:hidden_layer 隐藏层的层数'''rnn = nn.LSTM(5, 6, 2,bidirectional=True)'''参数1:batch_size 每个批次的样本数量参数2:sequence_length 每个样本的句子长度参数3:input_size 每个词的词向量维度(输入层神经元的个数)'''input = torch.randn(1, 3, 5)'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''h0 = torch.randn(4, 3, 6)'''参数1:hidden_layer 隐藏层的层数参数2:batch_size 每个批次的样本数量参数3:hidden_size 隐藏层神经元的个数'''c0 = torch.randn(4, 3, 6)output, (hn, cn) = rnn(input, (h0, c0))print(f'output {output}')print(f'hn {hn}')print(f'cn {cn}')if __name__ == '__main__':# dem01()# dem02()# dem03()# dem04_1()# dem04_2()# dem04_3()# dem05()# dem06_1()dem06_2()
D:\nlplearning\nlpbase\python.exe D:\nlpcoding\rnncode.py 
output tensor([[[ 0.0207, -0.1121, -0.0706,  0.1167, -0.3322, -0.0686],[ 0.1256,  0.1328,  0.2361,  0.2237, -0.0203, -0.2709],[-0.2668, -0.2721, -0.2168,  0.4734,  0.2420,  0.0349]]],grad_fn=<MkldnnRnnLayerBackward0>)
hn tensor([[[ 0.1501, -0.2106,  0.0213,  0.1309,  0.3074, -0.2038],[ 0.3639, -0.0394, -0.1912,  0.1282,  0.0369, -0.1094],[ 0.1217, -0.0517,  0.1884, -0.1100, -0.5018, -0.4512]],[[ 0.0207, -0.1121, -0.0706,  0.1167, -0.3322, -0.0686],[ 0.1256,  0.1328,  0.2361,  0.2237, -0.0203, -0.2709],[-0.2668, -0.2721, -0.2168,  0.4734,  0.2420,  0.0349]]],grad_fn=<StackBackward0>)
cn tensor([[[ 0.2791, -0.7362,  0.0501,  0.2612,  0.4655, -0.2338],[ 0.7902, -0.0920, -0.4955,  0.3865,  0.0868, -0.1612],[ 0.2312, -0.3736,  0.4033, -0.1386, -1.0151, -0.5971]],[[ 0.0441, -0.2279, -0.1483,  0.3397, -0.5597, -0.4339],[ 0.2154,  0.4119,  0.4723,  0.4731, -0.0284, -1.1095],[-0.5016, -0.5146, -0.4286,  1.5299,  0.5992,  0.1224]]],grad_fn=<StackBackward0>)Process finished with exit code 0

2 GRU

import torch
import torch.nn as nn# todo:基础GRU
def dem01():gru = nn.GRU(5, 6, 1)input = torch.randn(4, 3, 5)h0 = torch.randn(1, 3, 6)output, hn = gru(input, h0)print(f'output {output}')print(f'hn {hn}')if __name__ == '__main__':dem01()

http://www.yayakq.cn/news/906135/

相关文章:

  • 属于seo优化范畴的是衡阳seo服务
  • 湖南营销型网站建设多少钱wordpress 建站群
  • 长沙专业网站建设公司排名九里徐州网站开发
  • 网站描述 修改青海省建设厅网站备案资料
  • 简单的个人网站模板江苏百度推广代理商
  • 企业网站最下面的那栏叫啥dw做的网站怎样才有域名
  • seo与网站建设的关联广告流量投放
  • 苏州正规制作网站公司网站目录有什么意义
  • 自己有个服务器 怎样做网站python做网站用什么框架
  • 在网站后台做网页卖机器的网站怎么做
  • 青海论坛网站建设平面广告设计素材网
  • 网站建设对用户影响厦门网站设计定制
  • 网站文章怎么做标签wordpress完整迁移
  • 桥西企业做网站做网站定金是多少钱
  • 网站建设注意点深圳燃气公司地址在哪里
  • 网站建设设计设计公司哪家好一起做财经网站
  • 衡水做企业网站的公司广州做网站哪个好
  • 创意咨询策划公司wordpress网页优化
  • ftp怎么设置网站首页网页设计及网站建设在线作业
  • 深圳哪里有网站建设自己动手做衣服的网站
  • 大连有几家做网站的公司国际贸易官方网站
  • 制作微信的网站长沙vi设计公司
  • 珠海城乡建设网站互联网公司简介
  • 网站专题页面案例平面设计师个人网站
  • 林业网站建设有哪些为什么网站开发这么便宜
  • 某些网站域名解析错误photoshop+做网站logo
  • 网站建设需要ui吗画家网站建设
  • 怎么自己在家做网站企业wordpress主题
  • 公司网站建设为什么不直接买模版网站上传工具
  • 免费做网站报价修改散文网站