当前位置: 首页 > news >正文

国外做珠宝裸石的网站广西桂林自驾游最佳线路推荐

国外做珠宝裸石的网站,广西桂林自驾游最佳线路推荐,app在线生成平台 免费,在线科技成都网站推广公司C 微积分 - 求导 - 自动微分(Automatic Differentiation) flyfish 自动微分(Automatic Differentiation,简称 AD)是一种用于精确计算函数导数的技术。它结合了符号微分的准确性和数值微分的效率。自动微分的核心思想…

C++ 微积分 - 求导 - 自动微分(Automatic Differentiation)

flyfish

自动微分(Automatic Differentiation,简称 AD)是一种用于精确计算函数导数的技术。它结合了符号微分的准确性和数值微分的效率。自动微分的核心思想是利用计算图对函数进行分解,通过链式法则高效地计算导数,而无需进行符号运算或近似计算。自动微分能自动计算复杂函数的精确梯度。

C++ 微积分 - 求导 - 解析法(符号计算、符号微分)
C++ 微积分 - 求导 - 数值法

自动微分的基本概念

1 计算图:
自动微分将计算过程表示为一个有向无环图(DAG),其中节点表示变量或中间计算结果,边表示计算操作。通过这个图,可以追踪每个变量对输出的影响。

2 链式法则:
自动微分利用链式法则逐步计算导数。链式法则表示复合函数的导数为各个部分导数的乘积。
在计算图中,每个节点对输出的贡献可以通过链式法则从后往前累积计算。

3 前向模式和反向模式:
前向模式(Forward Mode):逐个变量进行传播计算,适用于输入变量较少的情况。
反向模式(Reverse Mode):从输出开始逐步传播导数,适用于输出变量较少的情况(如机器学习中的损失函数)。

自动微分提供精确的导数值,而不是近似值。与符号微分相比,自动微分在计算复杂函数时更高效。用户无需手动推导导数,可以直接获得函数的导数。

符号微分:处理复杂函数的导数推导可能非常复杂,容易导致表达式膨胀。
数值微分:容易受到舍入误差的影响,特别是在计算机浮点运算中。

自动微分的强大之处在于它可以自动地应用一系列简单的微积分规则来计算复杂函数的导数。通过重载运算符,Dual 结构体能够使用这些基本规则构建导数,而无需手动推导。

常见求导法则及其实现

1. 加法法则

对于两个函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x),有:
( f ( x ) + g ( x ) ) ′ = f ′ ( x ) + g ′ ( x ) (f(x) + g(x))' = f'(x) + g'(x) (f(x)+g(x))=f(x)+g(x)实现:Dual 结构体中,两个 Dual 对象相加时,值和导数分别相加。

Dual operator+(const Dual& other) const {return Dual(value + other.value, derivative + other.derivative);
}
2. 乘法法则

对于两个函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x),有:
( f ( x ) ⋅ g ( x ) ) ′ = f ′ ( x ) ⋅ g ( x ) + f ( x ) ⋅ g ′ ( x ) (f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x) (f(x)g(x))=f(x)g(x)+f(x)g(x)实现:Dual 结构体中,两个 Dual 对象相乘时,使用乘积法则计算导数。

Dual operator*(const Dual& other) const {return Dual(value * other.value, value * other.derivative + derivative * other.value);
}
3. 商法则

对于两个函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x),有:
( f ( x ) g ( x ) ) ′ = f ′ ( x ) ⋅ g ( x ) − f ( x ) ⋅ g ′ ( x ) ( g ( x ) ) 2 \left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x))^2} (g(x)f(x))=(g(x))2f(x)g(x)f(x)g(x)实现:Dual 结构体中,两个 Dual 对象相除时,使用商法则计算导数。

Dual operator/(const Dual& other) const {return Dual(value / other.value, (derivative * other.value - value * other.derivative) / (other.value * other.value));
}
4. 链式法则

对于复合函数 f ( g ( x ) ) f(g(x)) f(g(x)),有:
( f ( g ( x ) ) ) ′ = f ′ ( g ( x ) ) ⋅ g ′ ( x ) (f(g(x)))' = f'(g(x)) \cdot g'(x) (f(g(x)))=f(g(x))g(x)
自动微分天然支持链式法则,因为每个操作都跟踪其导数,计算过程中自动应用链式法则。

使用基本规则计算复合函数的导数

展示如何使用这些基本规则计算复合函数 h ( x ) = ( x 2 + 1 ) ⋅ sin ⁡ ( x ) h(x) = (x^2 + 1) \cdot \sin(x) h(x)=(x2+1)sin(x) 的导数。

#include <iostream>
#include <cmath>const double M_PI = 3.1415;
// 双数结构体,用于实现前向模式自动微分
struct Dual {double value;      // 函数值double derivative; // 导数值// 构造函数,初始化双数Dual(double v, double d) : value(v), derivative(d) {}// 重载加法运算符Dual operator+(const Dual& other) const {return Dual(value + other.value, derivative + other.derivative);}// 重载乘法运算符Dual operator*(const Dual& other) const {return Dual(value * other.value,value * other.derivative + derivative * other.value);}// 重载正弦函数friend Dual sin(const Dual& x) {return Dual(std::sin(x.value), std::cos(x.value) * x.derivative);}
};int main() {// 初始化 x 为一个双数,值为 π/4,导数为 1Dual x(M_PI / 4, 1.0);// 计算 h(x) = (x^2 + 1) * sin(x)Dual x_squared = x * x; // x^2Dual one(1.0, 0.0);     // 常数 1Dual h = (x_squared + one) * sin(x);// 输出结果std::cout << "h(x) 的值为: " << h.value << std::endl;std::cout << "h(x) 的导数为: " << h.derivative << std::endl;return 0;
}

自动微分法:使用前向模式自动微分来处理更复杂的函数,包括加法、乘法、除法、指数和对数函数。

  1. 结构体 Dual

  2. value 表示函数的值。
    derivative 表示导数的值。
    支持常见的运算符重载(加、减、乘、除、取反)以便进行代数操作。

  3. 数学函数支持:
    实现了 explog 函数,分别表示指数和对数函数的自动微分。

  4. 复杂函数计算:
    compute_function 函数实现了一个复杂的函数 f ( x ) = x 2 + 2 x + e x f(x) = x^2 + 2x + e^x f(x)=x2+2x+ex,并使用自动微分来计算其值和导数。

#include <iostream>
#include <cmath>// Dual number structure for automatic differentiation
struct Dual {double value;      // Function valuedouble derivative; // Derivative valueDual(double v, double d) : value(v), derivative(d) {}// Overload additionDual operator+(const Dual& other) const {return Dual(value + other.value, derivative + other.derivative);}// Overload subtractionDual operator-(const Dual& other) const {return Dual(value - other.value, derivative - other.derivative);}// Overload multiplicationDual operator*(const Dual& other) const {return Dual(value * other.value, value * other.derivative + derivative * other.value);}// Overload divisionDual operator/(const Dual& other) const {return Dual(value / other.value, (derivative * other.value - value * other.derivative) / (other.value * other.value));}// Overload unary minusDual operator-() const {return Dual(-value, -derivative);}
};// Exponential function
Dual exp(const Dual& x) {double exp_value = std::exp(x.value);return Dual(exp_value, exp_value * x.derivative);
}// Logarithm function
Dual log(const Dual& x) {return Dual(std::log(x.value), x.derivative / x.value);
}// Function to compute f(x) = x^2 + 2x + exp(x)
Dual compute_function(const Dual& x) {return x * x + Dual(2.0, 0.0) * x + exp(x);
}int main() {// Initialize x = 1.0 with derivative 1.0 (i.e., d(x)/dx = 1)Dual x(1.0, 1.0);// Compute the function and its derivativeDual result = compute_function(x);std::cout << "Function value at x = " << x.value << " is " << result.value << std::endl;std::cout << "Derivative at x = " << x.value << " is " << result.derivative << std::endl;return 0;
}
http://www.yayakq.cn/news/935532/

相关文章:

  • ui做的好的网站有哪些内容多功能响应式wordpress主题
  • 网站建设项目标书胜利油田局域网主页入口
  • 先进网站建设流程crm
  • 莆田市住房和城乡建设信息网aso优化推广
  • wordpress外贸建站教程专业竞价托管哪家好
  • 创立一个网站得多少钱室内设计效果图分析
  • 国家和住房城乡建设部网站北京网站建设那家好
  • 广西建设厅网站地址wordpress站点标题添加
  • 做网站还有用集团网站 wordpress
  • 室内设计师第一网站永久个人网站
  • 咨询聊城网站建设北京西站列车时刻表
  • 鹤壁网站推广公司网站建设时间推进表模板
  • 小说网站建设方案酷炫 网站模板
  • 嘉祥县建设局官方网站做网站与全网营销搜索推广排名优化
  • 建设厅网站初始数据入库做拼团的网站
  • 网站seo优化技术入门163网易邮箱
  • 怎么提高网站的权重网站公司成本
  • 做会员系统的网站用什么cms好微信官网开发
  • 怎么做彩票网站网站建设 大公司好
  • 宁波企业网站建设游戏推广工作怎么样
  • 请人做网站收费多少钱wordpress评论可见插件
  • 郑州制作网站设计外包公司属于什么行业
  • 那些免费网站可以做国外贸易邯郸市最新招聘信息
  • 苏州建设局网站企业宣传网站建设内容
  • 贵州铁路建设网站南充网站建设迅达网络
  • 温州做网站厉害的公司有哪些wordpress绑定微信公众号
  • 国内模板建站公司网站框架结构图
  • 长沙网站排名报价企业管理生产管理系统
  • 网站建设盈利媒体发布平台
  • 漯河网站建设lhwzzz长春火车站有几个