当前位置: 首页 > news >正文

网站内页全是404网站怎么更新文章

网站内页全是404,网站怎么更新文章,成功的门户网站,青海建设信息网站题目链接 题目大意 有 n n n ( 1 ≤ n ≤ 20 ) (1\leq n \leq 20) (1≤n≤20) 个花瓶,第 i i i 个花瓶里有 f i f_i fi​ ( 1 ≤ f i ≤ 1 0 12 ) (1\leq f_i \leq 10^{12}) (1≤fi​≤1012) 朵花。现在要选择 s s s ( 1 ≤ s ≤ 1 0 14 ) (1\leq s \leq 1…

题目链接

题目大意

n n n ( 1 ≤ n ≤ 20 ) (1\leq n \leq 20) (1n20) 个花瓶,第 i i i 个花瓶里有 f i f_i fi ( 1 ≤ f i ≤ 1 0 12 ) (1\leq f_i \leq 10^{12}) (1fi1012) 朵花。现在要选择 s s s ( 1 ≤ s ≤ 1 0 14 ) (1\leq s \leq 10^{14}) (1s1014)朵花。

求出有多少种方案。两种方案不同当且仅当两种方案中至少有一个花瓶选择花的数量不同,答案对 1 0 9 + 7 10^9+7 109+7 取模。

思路

取第 i i i 种花的生成函数可以表示为 : f i ( x ) = f_i(x)= fi(x)= 1 + x + x 2 + x 3 + ⋅ ⋅ ⋅ x f i 1+x+x^2+x^3+ \cdot \cdot \cdot x^{f_i} 1+x+x2+x3+xfi.

则选取方案的生成函数可以表示为 : G ( x ) = G(x)= G(x)= f 1 ( x ) ⋅ f 2 ( x ) ⋅ ⋅ ⋅ f n ( x ) = f_1(x) \cdot f_2(x) \cdot \cdot \cdot f_n(x) = f1(x)f2(x)fn(x)= ( 1 − x f 1 + 1 ) ( 1 − x f 2 + 1 ) ( 1 − x f 3 + 1 ) ⋅ ⋅ ⋅ ( 1 − x f n + 1 ) ( 1 − x ) n \frac {(1-x^{f_1+1})(1-x^{f_2+1})(1-x^{f_3+1}) \cdot \cdot \cdot (1-x^{f_n+1})} {(1-x)^n} (1x)n(1xf1+1)(1xf2+1)(1xf3+1)⋅⋅⋅(1xfn+1) = = = ∏ i = 1 n ( 1 − x f i + 1 ) ( 1 − x ) n \frac {\prod_{i=1}^{n}(1-x^{f_i+1})}{(1-x)^{n}} (1x)ni=1n(1xfi+1) = = = ∏ i = 1 n ( 1 − x f i + 1 ) \prod_{i=1}^{n}(1-x^{f_i+1}) i=1n(1xfi+1) ⋅ \cdot ∑ i = 0 ∞ \sum_{i=0}^\infty i=0 ( i + n − 1 i ) {i+n-1\choose i} (ii+n1) x i x_i xi = = = ∏ i = 1 n ( 1 − x f i + 1 ) \prod_{i=1}^{n}(1-x^{f_i+1}) i=1n(1xfi+1) ⋅ \cdot ∑ i = 0 ∞ \sum_{i=0}^\infty i=0 ( i + n − 1 n − 1 ) {i+n-1\choose n-1} (n1i+n1) x i x_i xi .

[ x s ] G ( x ) [x^s]G(x) [xs]G(x)即为所求的答案。

A ( x ) = ∏ i = 1 n ( 1 − x f i + 1 ) A(x)=\prod_{i=1}^{n}(1-x^{f_i+1}) A(x)=i=1n(1xfi+1), B ( x ) = ∑ i = 0 ∞ B(x)=\sum_{i=0}^\infty B(x)=i=0 ( i + n − 1 n − 1 ) x i {i+n-1\choose n-1} x_i (n1i+n1)xi.

由于 n ≤ 20 n\leq20 n20 , 所以 A ( x ) A(x) A(x) 最多只有 2 20 2^{20} 220 项,可以直接枚举,即 a n s = [ x s ] G ( x ) = ∑ i = 0 2 n [ x i ] A ( x ) ⋅ [ x s − i ] B ( x ) = ans=[x^s]G(x)=\sum_{i=0}^{2^n}[x^i]A(x) \cdot [x^{s-i}]B(x)= ans=[xs]G(x)=i=02n[xi]A(x)[xsi]B(x)= ∑ i = 0 2 n [ x i ] A ( x ) ⋅ ( s − i + n − 1 n − 1 ) \sum_{i=0}^{2^n}[x^i]A(x) \cdot {s-i+n-1\choose n-1} i=02n[xi]A(x)(n1si+n1),由于 n n n 很小可以暴力计算组合数,总的时间复杂度为 O ( n ⋅ 2 n ) O(n \cdot 2^n) O(n2n).

code

#include <bits/stdc++.h>
#define int long long
#define ll long long
#define pii pair<int, int>using namespace std;
const int mod = 1e9 + 7;
int f[30];int ksm(int x, int k)
{int res = 1;while (k > 0){if (k & 1)res = res * x % mod;x = x * x % mod;k >>= 1;}return res;
}signed main()
{ios::sync_with_stdio(0);cin.tie(0), cout.tie(0);int n, s;cin >> n >> s;int fac = 1;for (int i = 1; i <= n; ++i){cin >> f[i - 1];if (i < n)fac = fac * i % mod;}int infac = ksm(fac, mod - 2);int ans = 0;for (int i = 0; i < (1ll << n); ++i){int cnt = 0, sum = 0;for (int j = 0; j < n; ++j){if ((1ll << j) & i)cnt++, sum += f[j] + 1;}if (sum > s)continue;int tmp = 1;for (int j = 0; j < n - 1; ++j){int p = (s - sum + n - 1 - j) % mod;tmp = tmp * p % mod;}tmp = tmp * infac % mod;ans = (ans + ((cnt & 1) ? mod - tmp : tmp) % mod) % mod;}cout << (ans + mod) % mod << '\n';return 0;
}
http://www.yayakq.cn/news/770840/

相关文章:

  • 百度网站wordpress底部排
  • 网站 关键词库网络营销4c
  • 珠海网站制作哪家好电子商务的工作岗位有哪些?
  • 个人备案的网站可以做商城wordpress分享按钮
  • 做百科发那些网站新闻好做网站界面设计大小
  • 公众号怎么建网站网站手机自动跳转
  • 鼓楼机关建设网站wordpress 登录保护
  • 电商网站设计案例服装厂家东莞网站建设
  • 怎么做网盘搜索引擎网站欢迎页面模板
  • 如何快速学成网站开发wordpress相册移植typecho
  • 免网站域名注册金乡县住房与城乡建设局网站
  • 网站建设推荐信息佛山市住房和城乡建设部网站
  • 装修平台网站排名前十名有哪些厦门网站推广优化哪家好
  • 南京网站设计制作公司排名榜微信怎么申请小程序
  • 七个php源码下载的网站免费多用户商城系统源码
  • 波哥昆明网站建设昆明房地产网站建设
  • 网站建设职责建设企业网站的意义
  • 网站架构图图郑州同济医院
  • 海尔建设网站的内容emlog转移到wordpress
  • 中国效能建设网站做网站挣钱不
  • 宝安网站设计服务衡水做网站技术
  • 巴彦淖尔专业做网站的国家住房和城乡建设厅网站首页
  • 做网站宣传有用吗做公司网站都需要什么资料
  • 网站建设需要多少时间网站设计培训哪里好
  • 网站服务建设公司免费智能seo收录工具
  • 网站备案个人和企业的区别制作图片的ai
  • 湖北建设厅行政服务中心网站pc端软件下载
  • 外贸发货做网站怎么写亚马逊seo什么意思
  • seo网站关键字优化网站没有内容 备案能成功吗
  • 网站建设从入门到精通 网盘网站备案购买