当前位置: 首页 > news >正文

定制虚拟偶像汉化破解版金华关键词优化平台

定制虚拟偶像汉化破解版,金华关键词优化平台,制作网站步骤,wordpress无法htmlFlappy Bird QDN PyTorch博客 - 代码解读 介绍环境配置项目目录结构QDN算法重要函数解读preprocess(observation)DeepNetWork(nn.Module)BirdDQN类主程序部分 介绍 在本博客中,我们将介绍如何使用QDN(Quantile Dueling Network)算法&#xf…

Flappy Bird QDN PyTorch博客 - 代码解读

    • 介绍
    • 环境配置
    • 项目目录结构
    • QDN算法
    • 重要函数解读
      • preprocess(observation)
      • DeepNetWork(nn.Module)
      • BirdDQN类
      • 主程序部分

介绍

在本博客中,我们将介绍如何使用QDN(Quantile Dueling Network)算法,在PyTorch平台下训练Flappy Bird游戏。QDN算法是一种强化学习算法,特别适用于处理具有不确定性的环境,如游戏。
在这里插入图片描述

环境配置

在开始之前,请确保您已经配置好了以下环境:

(rl) PS C:\Users\dd> conda list
# packages in environment at D:\Software\Miniconda3\envs\rl:
#
# Name                    Version                   Build  Channel
numpy                     1.22.3           py38h7a0a035_0    defaults
numpy-base                1.22.3           py38hca35cd5_0    defaults
opencv-python             4.6.0.66                 pypi_0    pypi
pillow                    6.2.1                    pypi_0    pypi
pygame                    2.1.2                    pypi_0    pypi
pygments                  2.11.2             pyhd3eb1b0_0    defaults
python                    3.8.13               h6244533_0    defaults
python-dateutil           2.8.2              pyhd3eb1b0_0    defaults
python_abi                3.8                      2_cp38    conda-forge
pytorch                   1.8.2           py3.8_cuda11.1_cudnn8_0    pytorch-lts

请确保您的环境中包含了以上所列的依赖项,特别是PyTorch版本为1.8.2。

项目目录结构

在这里,我们将简要介绍项目的目录结构,以便您更好地理解整个项目的组织和文件布局。

项目根目录
|-- qdn_train.py          # QDN算法训练脚本
|-- flappy_bird.py        # Flappy Bird游戏实现
|-- model.py              # QDN模型定义
|-- replay_buffer.py      # 经验回放缓存实现
|-- utils.py              # 辅助工具函数
|-- ...

QDN算法

QDN(Quantile Dueling Network)算法是一种强化学习算法,用于训练智能体在Flappy Bird游戏中做出决策。以下是算法的关键要点:

  1. Replay Memory(记忆库): 在每个时间步,智能体与环境交互,将经验存储在记忆库中。这些经验包括当前状态、选择的动作、获得的奖励、下一个状态以及游戏是否终止。

  2. 神经网络架构: 使用PyTorch实现了一个神经网络,其中包括卷积层和全连接层。神经网络的输出是每个可能动作的Q值。

  3. 训练过程: 在每个时间步,智能体根据当前状态选择一个动作。通过与环境交互,获得下一个状态、奖励和终止信号。这些信息被用来更新神经网络的权重,以最大化预期累积奖励。

  4. Epsilon-Greedy Exploration: 在训练的早期阶段,智能体更多地依赖于探索,通过随机选择动作来发现更多可能的策略。随着训练的进行,探索率逐渐减小。

  5. Target Network: 为了稳定训练,引入了一个目标网络,定期从主网络复制参数。这有助于减小训练中的波动性。

重要函数解读

preprocess(observation)

将一帧彩色图像处理成黑白的二值图像。使用OpenCV将图像调整为80x80大小,转换为灰度图,并进行二值化处理。

DeepNetWork(nn.Module)

定义了神经网络的结构,包括卷积层和全连接层。用于近似Q值函数。

BirdDQN类

主要的强化学习智能体类,包括了以下主要函数:

  • save(): 保存训练好的模型参数。
  • load(): 加载已保存的模型参数。
  • train(): 使用小批量的记忆数据进行神经网络训练。
  • setPerception(): 更新记忆库,判断是否进行训练,输出当前状态信息。
  • getAction(): 根据当前状态,通过epsilon-greedy策略选择动作。
  • setInitState(): 初始化状态,将一帧图像复制四次作为初始输入。

主程序部分

创建了BirdDQN智能体实例,与Flappy Bird游戏环境交互,并不断执行动作,观察状态变化,更新神经网络参数。

以上是对代码的主要算法和函数的解读。这个项目结合了深度学习和强化学习,通过训练智能体来玩Flappy Bird游戏,展示了在PyTorch平台下的实现过程。如果读者有任何疑问或需要进一步解释,请在评论中提出。祝愿你在实践中获得成功!

http://www.yayakq.cn/news/58869/

相关文章:

  • 做app的网站有哪些什么是oa系统
  • 南通北京网站建设程序员做音乐网站
  • 怎么用网站做word文件顺义电大网上作业在那个网站做
  • 济南网站开发企业搜寻的网站有哪些
  • 专门做礼物的网站wordpress后台界面修改
  • 自己建网站需要服务器么西安公司注册核名
  • 流行的网站开发框架建设品牌型网站制作
  • 机场建设网站北京百度推广代理公司
  • 建个网站需要投资多少钱大连三川建设集团
  • 网页制作建立站点网站建设的基本教程
  • 合肥市网站优化网站前端静态模板下载
  • 响应式网站免费阿里云做的网站误删了
  • 嘉定区 网站建设wordpress 赞 分享
  • 企业网站建设合同范本免费网站登录页面空白
  • 网站建设管理标准儿童早教网站模板
  • asp.net做的小网站怎么找推广平台
  • 西宁做网站建设公司哪家好西安网站seo推广
  • 做c语言的题目的网站广州sem代运营推广公司
  • 南阳网站开发公司做推文的编辑网站
  • 宁波做网站排名的公司有哪些怎么做网站镜像
  • 网站开发青岛php网站开发员工资
  • 旅游网站建设成都新华seo推广
  • 网站上传文件新品发布会流程
  • 好用心 做网站送女友县建设局 协会网站
  • 做公司集团网站响应式网页设计软件
  • 四川微信网站建设推拖拽式网站建设源码
  • 安徽中色十二冶金建设有限公司网站国家商标注册查询官网入口
  • 免费学校网站模板htmlwordpress 汉化失败
  • 昆明网站建设哪家强怎么建设vip电影网站
  • 安全联盟网站认证常州网络公司联系方式