当前位置: 首页 > news >正文

网站的配色方案杭州网络推广公司那家好

网站的配色方案,杭州网络推广公司那家好,什么样建广告网站,重庆是哪个省属于哪个省份3.1 自由电子模型 Free electron model 研究晶体中的电子: 自由电子理论:不考虑离子实能带理论:考虑离子实(周期性势场)的作用 3.1.1 德鲁德模型 Drude Model - Classical Free Electron Model (1)德鲁德模型 德鲁…

3.1 自由电子模型 Free electron model

在这里插入图片描述
研究晶体中的电子:

  • 自由电子理论:不考虑离子实
  • 能带理论:考虑离子实(周期性势场)的作用

3.1.1 德鲁德模型 Drude Model - Classical Free Electron Model

(1)德鲁德模型

德鲁德模型:价电子游离于特定原子周围,弥散于整个晶体中,形成“自由电子气”。

The Drude model of electrical conduction was proposed in 1900 by Paul Drude to explain the transport properties of electrons in materials (especially metals). The model, which is an application of kinetic theory, assumes that the microscopic behavior of electrons in a solid may be treated classically and looks much like a pinball machine, with a sea of constantly jittering electrons bouncing and re-bouncing off heavier, relatively immobile positive ions.

Assumption of the electron gas:

  1. 独立电子近似 Independent electron approximation: No electrostatic interaction and collision among free electrons(自由电子之间没有相互作用和碰撞)
  2. 自由电子近似 Free electron approximation: No electrostatic interaction between free electrons and ions(电子和离子实之间只有碰撞,没有静电相互作用)
  3. 碰撞假设 Collision assumption: Velocity of electrons after collision with ions only concerns with temperature, but not the velocity before collision(电子和离子实的碰撞是瞬时的,碰撞后的速度仅与温度有关)
  4. 弛豫时间近似 Relaxation time approximation: Relaxation time τ is independent with the position and velocity of electrons(弛豫时间即同一粒子两次碰撞的时间间隔,它仅依赖于晶体结构)

在德鲁德模型中,存在电场时,电子每两次碰撞之间都会获得电场加速,从而形成漂移速度 v d v_d vd,且漂移速度远小于电子热运动的速度 v d ≪ v R M S = 3 k B T m v_d \ll v_{RMS} = \sqrt{\frac{3k_BT}{m}} vdvRMS=m3kBT

利用德鲁德模型能够成功解释:

  • 欧姆定律
  • Wiedemann-Franz ratio comes out close to right for most materials
  • Many other transport properties predicted correctly

在这里插入图片描述

在这里插入图片描述

(2) failure of Drude Model

德鲁德模型存在的问题:

  • 电子比热 Specific Heat of electrons
  • 电导率与温度的关系 Temperature dependence of σ
  • Wiedemann-Franz ratio
  • The Seebeck/Peltier coefficient come out wrong by a factor of 100.

Despite the shortcomings of Drude theory, it nonetheless was the only theory of metallic conductivity for a quarter of a century (until the Sommerfeld theory improved it), and it remains quite useful today.

3.1.2 索末菲模型 Sommerfeld Model - Quantum Mechanical Free Electron Model

索末菲保留了德鲁德的自由电子气假设(前两个),但是索末菲去除了“碰撞”的概念,引入量子统计的理论(费米-狄拉克分布 Fermi-Dirac Distribution)。

在这里插入图片描述
在这里插入图片描述

(1)势阱 potential well

1D Infinite Potential Well

( − ℏ 2 2 m d 2 d x 2 + U ( x ) ) ψ ( x ) = E ψ ( x ) \left( -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + U(x) \right ) \psi (x) = E \psi(x) (2m2dx2d2+U(x))ψ(x)=Eψ(x)

k = n π L , n = 1 , 2 , 3 , … k = n \frac{\pi}{L}, \ \ n=1,2,3,\dots k=nLπ,  n=1,2,3,

在这里插入图片描述
3D Infinite Potential Well
在这里插入图片描述
− ℏ 2 2 m ( ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 ) ψ ( x , y , z ) = E ψ ( x , y , z ) -\frac{\hbar ^2}{2m}\left( \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) \psi(x,y,z) = E \psi (x,y,z) 2m2(x22+y22+z22)ψ(x,y,z)=Eψ(x,y,z)

ψ ( x , y , z ) = ψ ( x ) ψ ( y ) ψ ( z ) \psi(x,y,z) = \psi(x) \psi(y) \psi(z) ψ(x,y,z)=ψ(x)ψ(y)ψ(z)

∵ E = ℏ 2 k 2 2 m , k ⃗ = k x i ⃗ + k y j ⃗ + k z l ⃗ \because E = \frac{\hbar ^2 k^2}{2m}, \ \ \vec k = k_x \vec i + k_y \vec j + k_z \vec l E=2m2k2,  k =kxi +kyj +kzl

∴ E = ℏ 2 2 m ( k x 2 + k y 2 + k z 2 ) \therefore E = \frac{\hbar^2}{2m} (k_x^2 + k_y^2 + k_z^2) E=2m2(kx2+ky2+kz2)
在这里插入图片描述

(2)费米-狄拉克分布与费米能 Fermi-Dirac distribution & Fermi Energy

F l = α l ω l = 1 e ( α + β E l ) + 1 = 1 e ( E l − μ ) / k B T + 1 = 1 e ( E l − E F ) / k B T + 1 F_l = \frac{\alpha _l}{\omega _ l} = \frac{1}{e^{(\alpha + \beta E_l)} + 1} = \frac{1}{e^{(E_l - \mu)/k_B T} + 1} = \frac{1}{e^{(E_l - E_F)/k_B T} + 1} Fl=ωlαl=e(α+βEl)+11=e(Elμ)/kBT+11=e(ElEF)/kBT+11
在这里插入图片描述

a. Classical theory of Occupancy Condition at T=0K

  1. 电子能量可以相同,不同电子可以占据同一能级,即不同电子具有相同的量子态。
  2. 电子分布满足Maxwell-Boltzmann分布。
  3. 一个系统的温度反应了系统内粒子运动的动能,T=0,所有电子静止不动。 1 2 m v ˉ 2 = 3 2 k B T , ∴ T = 0 K , v = 0 \frac{1}{2} m \bar v^2 = \frac{3}{2}k_B T,\ \ \ \therefore T=0K,\ v=0 21mvˉ2=23kBT,   T=0K, v=0

b. Quantum mechanically of Occupancy Condition at T=0K

Pauli’s Exclusion Principle:两个费米子不能处于同一量子态。

考虑自旋,一个能级对应有f组量子数,即有f重简并,这一个能级可以放2f个电子。

费米能级:在绝对零度时,一个费米子具有的最高能量。
The Fermi energy : the highest energy a fermion can take at absolute zero temperature.

假想把所有的费米子从量子态上移开,之后再把这些费米子按照一定的规则填充在各个可供占据的能量态上,并且这种填充过程中每个费米子都占据最低的可供占据的量子态。最后一个费米子占据的量子态即可粗略地认为是费米能级。

c. Quantum mechanically of Occupancy Condition at T>0K

CFE model predicts: C V = 3 2 R C_V=\frac{3}{2}R CV=23R
experiments show: C V = 1 0 − 4 R T C_V = 10^{-4} RT CV=104RT

经典自由电子模型认为,所有电子都会对热容有贡献;量子力学认为,只有费米能级附近的电子才有可能脱离原子,具有导电特性,因为高能级被占据导致低能级电子无法跃迁。

在这里插入图片描述

The Fermi–Dirac distribution at zero temperature (solid line) constitutes a step function. For T > 0 (dashed line), broadening appears in a region of width k B T k_B T kBT around the Fermi edge located at ε = ε F = k B T F . ε = ε_F = k_B T_F. ε=εF=kBTF. If the distance of the edge from the origin is much larger than the area of broadening, the distribution function still displays the characteristic step-like behavior. Clearly, this picture is valid for the dimensionless parameter T / T F T/T_F T/TF being small.
在这里插入图片描述

(3)计算0K时的费米能 Fermi Energy at T=0K

视频讲解:费米能和态密度

KaTeX parse error: Undefined control sequence: \k at position 20: …= \frac{(\hbar \̲k̲_F)^2}{2m}

在这里插入图片描述
n u m b e r o f k : V F ⋅ ρ ( k ) = ( 4 π k F 3 3 ) ( V 8 π 3 ) = k F 3 6 π 2 V number \ of \ k: \ V_F \cdot \rho(k) = \left(\frac{4\pi k_F^3}{3} \right) \left( \frac{V}{8\pi^3} \right) = \frac{k_F^3}{6\pi^2}V number of k: VFρ(k)=(34πkF3)(8π3V)=6π2kF3V
在这里插入图片描述
where N is the total number of electrons, n=N/V is the total number of electrons per unit volume in the alloy, m is the effective mass, ħ is the reduced Plank’s constant

Fermi temperature T F T_F TF: T F = E F k B T_F = \frac{E_F}{k_B} TF=kBEF

费米能级对应的费米球的半径是费米半径,对应的费米面是电子占据能级和不占据的分界面。
Fermi sphere: 费米面
Fermi wave vector k F k_F kF: 费米波矢 the radius of the Fermi sphere
At T=0K, inside Fermi sphere, all orbits are occupied; outside Fermi sphere, all orbits are empty.
在这里插入图片描述

(4)态密度 density of state

态密度:单位能量间隔电子能态(量子态或者轨道)的数量。

DOS: the number of electronic energy states (orbits) per unit energy.

g ( E ) = d Z d E g(E) = \frac{dZ}{dE} g(E)=dEdZ

In crystal dynamics, the density of states g(ω) is defined as the number of oscillators (or k) per unit frequency interval.

Each k state represents two possible electron states: (考虑自旋,一个k态对应两个可能的电子能量态)
one for spin up, the other for spin down, thus the total number of electronic states in a sphere of diameter k is: Z ( E ) = 2 ⋅ ρ ( k ) ⋅ 4 3 π k 3 = V k 3 3 π 2 Z(E) = 2\cdot \rho(\mathbf{k}) \cdot \frac{4}{3} \pi k^3 = \frac{Vk^3}{3\pi^2} Z(E)=2ρ(k)34πk3=3π2Vk3

consider: E = ℏ 2 k 2 2 m E = \frac{\hbar ^2 k^2}{2m} E=2m2k2
g ( E ) = d Z d E = d Z d k ⋅ d k d E g(E) = \frac{dZ}{dE} = \frac{dZ}{dk}\cdot \frac{dk}{dE} g(E)=dEdZ=dkdZdEdk
∴ g ( E ) = V 2 π 2 ( 2 m ℏ 2 ) 3 / 2 \therefore g(E) = \frac{V}{2\pi^2} \left( \frac{2m}{\hbar^2}\right)^{3/2} g(E)=2π2V(22m)3/2

g ( E ) = C ⋅ E 1 / 2 g(E) = C\cdot E^{1/2} g(E)=CE1/2

{ 1 D : g ( E ) = C ⋅ E − 1 / 2 2 D : g ( E ) = m S π ℏ 2 3 D : g ( E ) = C ⋅ E − 1 / 2 \begin{cases} 1D: g(E) = C\cdot E^{-1/2} \\ 2D: g(E) = \frac{mS}{\pi \hbar^2} \\ 3D: g(E) = C\cdot E^{-1/2} \end{cases} 1D:g(E)=CE1/22D:g(E)=π2mS3D:g(E)=CE1/2

(5)费米能级附近的电子数量 e- number near E F E_F EF

在这里插入图片描述

DOS g(E): the number of electronic energy states (orbits) per unit energy.
f(E): probability that an electronic energy state be occupied.

N(E):电子能量分布函数 Electron energy distribution function
N(E)dE = number of e- with energies between E and E+dE
g(E)f(E)dE = number of e- with energies between E and E+dE

N ( E ) = g ( E ) f ( E ) N(E) = g(E)f(E) N(E)=g(E)f(E)

total number of e-: N = ∈ 0 ∞ g ( E ) f ( E ) d E N = \in_0^{\infty} g(E)f(E)dE N=0g(E)f(E)dE

在这里插入图片描述

下面这个方法很合适:在这里插入图片描述

(6)电子气能量 e- gas energy

Total energy for electron gas:

T=0K :

E t = ∫ E d N = ∫ E ⋅ g ( E ) f ( E ) d E = ∫ 0 E F 0 C ⋅ E 1 / 2 d E = ∫ 0 E F 0 C E 3 / 2 d E = 2 C 5 ( E F 0 ) 5 / 2 E_t = \int EdN = \int E\cdot g(E)f(E)dE = \int_0^{E_F^0} C\cdot E^{1/2} dE = \int_0^{E_F^0} CE^{3/2}dE = \frac{2C}{5}(E_F^0)^{5/2} Et=EdN=Eg(E)f(E)dE=0EF0CE1/2dE=0EF0CE3/2dE=52C(EF0)5/2

Average energy for free electrons:
E ˉ = E t N = 3 5 E F 0 \bar E = \frac{E_t}{N} = \frac{3}{5}E_F^0 Eˉ=NEt=53EF0
E t = 3 5 N E F 0 E_t = \frac{3}{5}NE_F^0 Et=53NEF0

At T=0K,the average energy of a free electron is 60% of the Femi energy.

T>0K :

E t = ∫ E ⋅ g ( E ) f ( E ) d E = C ∫ 0 ∞ E 3 / 2 1 e ( E − E F ) / k B T + 1 = … = 3 5 N E F 0 [ 1 + 5 12 π 2 ( k B T E F 0 ) 2 ] \begin{align} E_t &=\int E\cdot g(E)f(E)dE \\ &= C \int_0^{\infty} E^{3/2} \frac{1}{e^{(E-E_F)/k_B T}+1} \\ & =\dots \\ &= \frac{3}{5}N E_F^0 [1+ \frac{5}{12}\pi^2 (\frac{k_B T}{E_F^0})^2] \end{align} Et=Eg(E)f(E)dE=C0E3/2e(EEF)/kBT+11==53NEF0[1+125π2(EF0kBT)2]

第一项是零点能,第二项由于分母的费米能很大所以可以忽略不计。
温度升高,热容涨幅不明显

E F = E F 0 [ 1 − 1 12 π 2 ( k B T E F 0 ) 2 ] = E F 0 [ 1 − π 2 12 ( T T F ) 2 ] ≈ E F 0 E_F = E_F^0 \left[1- \frac{1}{12}\pi^2 (\frac{k_B T}{E_F^0})^2 \right] = E_F^0 \left[1-\frac{\pi^2}{12}\left( \frac{T}{T_F}\right)^2 \right] \approx E_F^0 EF=EF0[1121π2(EF0kBT)2]=EF0[112π2(TFT)2]EF0

http://www.yayakq.cn/news/671089/

相关文章:

  • 铁岭网络推广网站建设四川省的建设厅注册中心网站首页
  • 锦州网站建设排行榜智通人才网招聘网东莞官网
  • 优化网站 提高查询网站开发需求图
  • 全屏响应式网站贵州建设厅网站办事大厅
  • 淘宝联盟个人网站怎么做网站页面设计培训
  • 金湖县城乡建设局网站找南昌兼职做网站的
  • 如何网站开发深圳双区建设
  • 可以在哪些网站做翻译兼职python从入门到实践
  • 旅游门户网站模板网站开发 验收标准
  • 电商模板网站免费网站建设域名
  • 线上网站建设南宁建站服务
  • 淘宝客必须做网站深圳响应样式网站建设费用
  • 网站建设规划模板广告海报
  • 天津个人专业做网站策划公司
  • 有哪些做相册视频剪辑的网站广东网站设计工具
  • 厚街响应式网站建设湖南省住房和城乡建设厅网
  • 同一ip大量访问网站做原创品牌服饰的网站
  • 国内哪家公司做网站最好跟我一起做网站
  • 免费页面网站opencart做视频网站
  • 企业网站建设定制开发服务建站行业有哪些
  • 网站自助授权系统读书网站如何做
  • 保定企业建网站做家务的男人网站
  • 郑州网站外包公司国家企业信用公示网官网
  • 网站建设领先wordpress能做app吗
  • 平度市城市建设局网站重庆市建筑信息网查询
  • 怎么做服务器网站上海网站建设哪个平台好
  • 电影网站建设教学视频聊城做手机网站
  • 高校保卫处网站建设工作总结dll网站服务
  • 黑龙江省营商环境建设监察局网站网站制作泉州公司
  • 池州网站建设价格手机网站建设服务电话