当前位置: 首页 > news >正文

dedecms做网站教程wordpress 页脚信息

dedecms做网站教程,wordpress 页脚信息,网站建设费用固定资产怎么入,火车采集器 wordpress目录 一、用法精讲 52、pandas.from_dummies函数 52-1、语法 52-2、参数 52-3、功能 52-4、返回值 52-5、说明 52-6、用法 52-6-1、数据准备 52-6-2、代码示例 52-6-3、结果输出 53、pandas.factorize函数 53-1、语法 53-2、参数 53-3、功能 53-4、返回值 53-…目录 一、用法精讲 52、pandas.from_dummies函数 52-1、语法 52-2、参数 52-3、功能 52-4、返回值 52-5、说明 52-6、用法 52-6-1、数据准备 52-6-2、代码示例 52-6-3、结果输出 53、pandas.factorize函数 53-1、语法 53-2、参数 53-3、功能 53-4、返回值 53-5、说明 53-6、用法 53-6-1、数据准备 53-6-2、代码示例 53-6-3、结果输出  54、pandas.unique函数 54-1、语法 54-2、参数 54-3、功能 54-4、返回值 54-5、说明 54-6、用法 54-6-1、数据准备 54-6-2、代码示例 54-6-3、结果输出 二、推荐阅读 1、Python筑基之旅 2、Python函数之旅 3、Python算法之旅 4、Python魔法之旅 5、博客个人主页 一、用法精讲 52、pandas.from_dummies函数 52-1、语法 # 52、pandas.from_dummies函数 pandas.from_dummies(data, sepNone, default_categoryNone) Create a categorical DataFrame from a DataFrame of dummy variables.Inverts the operation performed by get_dummies().New in version 1.5.0.Parameters: data DataFrame Data which contains dummy-coded variables in form of integer columns of 1’s and 0’s.sep str, default None Separator used in the column names of the dummy categories they are character indicating the separation of the categorical names from the prefixes. For example, if your column names are ‘prefix_A’ and ‘prefix_B’, you can strip the underscore by specifying sep’_’.default_category None, Hashable or dict of Hashables, default None The default category is the implied category when a value has none of the listed categories specified with a one, i.e. if all dummies in a row are zero. Can be a single value for all variables or a dict directly mapping the default categories to a prefix of a variable.Returns: DataFrame Categorical data decoded from the dummy input-data.Raises: ValueError When the input DataFrame data contains NA values.When the input DataFrame data contains column names with separators that do not match the separator specified with sep.When a dict passed to default_category does not include an implied category for each prefix.When a value in data has more than one category assigned to it.When default_categoryNone and a value in data has no category assigned to it.TypeError When the input data is not of type DataFrame.When the input DataFrame data contains non-dummy data.When the passed sep is of a wrong data type.When the passed default_category is of a wrong data type. 52-2、参数 52-2-1、data(必须)一个DataFrame对象包含了哑变量(0和1)的列每列通常表示一个类别的存在或缺失。 52-2-2、sep(可选默认值为None)用于分隔哑变量列名中类别信息的分隔符。例如如果列名是A_cat和A_dog并且用下划线分隔那么sep应该设置为 _。 52-2-3、default_category(可选默认值为None)在原始数据中可能有一些类别在哑变量中缺失这个参数允许指定一个默认类别以便在缺失的情况下使用。 52-3、功能 接受一个包含哑变量的DataFrame并将其转换回表示原始类别的DataFrame哑变量通常是通过对分类变量进行独热编码(one-hot encoding)生成的。 52-4、返回值 返回值是一个DataFrame其中包含了原始的分类数据这些数据是根据哑变量的值重构的即每行数据中值为1的哑变量列对应的列名(去掉分隔符和前缀)即为原始分类变量的值。 52-5、说明 该函数非常有用特别是在对数据进行独热编码之后希望恢复原始分类变量的情况下它简化了数据预处理和模型结果解释的过程。 52-6、用法 52-6-1、数据准备 无 52-6-2、代码示例 # 52、pandas.from_dummies函数 import pandas as pd # 示例哑变量DataFrame data pd.DataFrame({color_red: [1, 0, 0],color_blue: [0, 1, 0],color_green: [0, 0, 1] }) # 使用pandas.from_dummies将哑变量转换回原始分类数据 original_data pd.from_dummies(data, sep_) print(original_data) 52-6-3、结果输出 # 52、pandas.from_dummies函数 # color # 0 red # 1 blue # 2 green 53、pandas.factorize函数 53-1、语法 # 53、pandas.factorize函数 pandas.factorize(values, sortFalse, use_na_sentinelTrue, size_hintNone) Encode the object as an enumerated type or categorical variable.This method is useful for obtaining a numeric representation of an array when all that matters is identifying distinct values. factorize is available as both a top-level function pandas.factorize(), and as a method Series.factorize() and Index.factorize().Parameters: valuessequence A 1-D sequence. Sequences that aren’t pandas objects are coerced to ndarrays before factorization.sortbool, default False Sort uniques and shuffle codes to maintain the relationship.use_na_sentinelbool, default True If True, the sentinel -1 will be used for NaN values. If False, NaN values will be encoded as non-negative integers and will not drop the NaN from the uniques of the values.New in version 1.5.0.size_hintint, optional Hint to the hashtable sizer.Returns: codesndarray An integer ndarray that’s an indexer into uniques. uniques.take(codes) will have the same values as values.uniquesndarray, Index, or Categorical The unique valid values. When values is Categorical, uniques is a Categorical. When values is some other pandas object, an Index is returned. Otherwise, a 1-D ndarray is returned.NoteEven if there’s a missing value in values, uniques will not contain an entry for it. 53-2、参数 53-2-1、values(必须)需要编码的数组或序列可以是列表、NumPy数组、Pandas系列等。 53-2-2、sort(可选默认值为False)是否对唯一值数组进行排序如果为True返回的唯一值数组将按字典顺序排序。 53-2-3、use_na_sentinel(可选默认值为True)是否在输出整数数组中使用-1作为NaN的标记如果为False则将NaN也编码为一个唯一的整数。 53-2-4、size_hint(可选默认值为None)一个整数提示用于内部优化指示预期的唯一值的数量这可以提高大规模数据的处理性能。 53-3、功能 将一组值(如列表、数组或序列)编码为整数索引。具体来说它会为每个唯一值分配一个唯一的整数并返回这些整数索引以及唯一值的数组。 53-4、返回值 返回两个对象 53-4-1、整数索引数组一个与输入数组大小相同的整数数组其中每个整数对应于输入数组中的一个值。 53-4-2、唯一值数组一个包含输入数组中所有唯一值的数组按它们首次出现的顺序排列除非使用sortTrue参数。 53-5、说明 pandas.factorize的主要功能是 53-5-1、将类别数据转换为整数索引通过为每个唯一值分配一个整数使得类别数据可以用于数值计算或进一步分析。 53-5-2、处理缺失值可以选择是否将缺失值(NaN)编码为一个特定的整数(默认为-1)。 53-6、用法 53-6-1、数据准备 无 53-6-2、代码示例 # 53、pandas.factorize函数 # 53-1、基本用法 import pandas as pd values [a, b, a, c, b] factorized_values, unique_values pd.factorize(values) print(factorized_values) print(unique_values)# 53-2、使用sort参数 import pandas as pd values [a, b, a, c, b] factorized_values, unique_values pd.factorize(values, sortTrue) print(factorized_values) print(unique_values)# 53-3、处理NaN import pandas as pd values_with_nan [a, b, None, a, c] factorized_values, unique_values pd.factorize(values_with_nan, use_na_sentinelTrue) print(factorized_values) print(unique_values)# 53-4、使用size_hint参数 import pandas as pd large_values [a] * 100000 [b] * 100000 factorized_values, unique_values pd.factorize(large_values, size_hint2) print(factorized_values[:10]) print(unique_values) 53-6-3、结果输出  # 53、pandas.factorize函数 # 53-1、基本用法 # [0 1 0 2 1] # [a b c]# 53-2、使用sort参数 # [0 1 0 2 1] # [a b c]# 53-3、处理NaN # [ 0 1 -1 0 2] # [a b c]# 53-4、使用size_hint参数 # [0 0 0 0 0 0 0 0 0 0] # [a b] 54、pandas.unique函数 54-1、语法 # 54、pandas.unique函数 pandas.unique(values) Return unique values based on a hash table.Uniques are returned in order of appearance. This does NOT sort.Significantly faster than numpy.unique for long enough sequences. Includes NA values.Parameters: values 1d array-like Returns: numpy.ndarray or ExtensionArray The return can be:Index : when the input is an IndexCategorical : when the input is a Categorical dtypendarray : when the input is a Series/ndarrayReturn numpy.ndarray or ExtensionArray. 54-2、参数 54-2-1、values(必须)可以是以下几种类型的对象 一维的pandas.Series一维的pandas.Index一维的numpy.ndarray一维的列表或序列 54-3、功能 返回输入数组中的唯一值按它们在数组中首次出现的顺序排列。 54-4、返回值 返回一个numpy.ndarray其中包含输入数组中的唯一值。 54-5、说明 pandas.unique是一个简单且高效的函数用于从一维数组、Series或Index中提取唯一值它只需要一个参数即要处理的数组并返回一个包含唯一值的numpy.ndarray这种功能在数据预处理和清理阶段非常有用可以帮助识别数据集中的独特元素。 54-6、用法 54-6-1、数据准备 无 54-6-2、代码示例 # 54、pandas.unique函数 # 54-1、处理列表 import pandas as pd values [1, 2, 2, 3, 4, 4, 4, 5] unique_values pd.unique(values) print(unique_values)# 54-2、处理pandas Series import pandas as pd series pd.Series([a, b, a, c, b, d]) unique_values pd.unique(series) print(unique_values)# 54-3、处理numpy数组 import pandas as pd import numpy as np array np.array([1, 2, 3, 1, 2, 3, 4]) unique_values pd.unique(array) print(unique_values)# 54-4、处理含有NaN的数据 import pandas as pd values_with_nan [1, 2, np.nan, 2, np.nan, 3] unique_values pd.unique(values_with_nan) print(unique_values) 54-6-3、结果输出 # 54、pandas.unique函数 # 54-1、处理列表 # [1 2 3 4 5]# 54-2、处理pandas Series # [a b c d]# 54-3、处理numpy数组 # [1 2 3 4]# 54-4、处理含有NaN的数据 # [ 1. 2. nan 3.] 二、推荐阅读 1、Python筑基之旅 2、Python函数之旅 3、Python算法之旅 4、Python魔法之旅 5、博客个人主页
http://www.yayakq.cn/news/1744/

相关文章:

  • 怎么查看一个网站开发语言家具网站案例
  • 网站提升流量wordpress文章网格
  • 东南亚cod建站工具广州网站设计公司推荐哪家
  • 打鱼跟电子游戏网站怎么做栖霞做网站价格
  • 如何做网站本地服务器吗制作h5的软件有什么
  • 自己做网站要学什么软件下载郑州%公司 网站建设
  • 大兴模版网站搭建哪家好阿里云成功备案的网站增加域名
  • 宁波建网站可按需定制叙永县城乡建设部网站首页
  • 天津网站建设方案书网站用户权限
  • 北京网站建设公司拟莱芜网球培训
  • 月子会所网站源码深圳网站设计有哪些
  • 免费制作论坛网站模板wordpress 找不到网页
  • 设计购物网站南宁码科网站建设
  • 宁波网站建设制作电话号码手机网站建站
  • 响应式设计网站手机百度免费下载
  • 有哪些网站做任务有佣金株洲网
  • 好网站范例淘宝客app定制
  • php禁止ip访问网站建站之星怎么安装
  • 做一个网站多少费用成都市网站建设服务商
  • qq空间做单页网站做响应式网站哪家好
  • asp企业网站模板营销型网站建设成为企业发展新趋势
  • 在线手机网站建设阿里云域名注册新人
  • 长清治做网站福州搜索优化公司
  • 常用网站开发工具有哪些wordpress+修改邮箱
  • 用户体验网站外贸公司的网站建设
  • 做网站需要跟客户了解什么软件asp.net 网站的头部和底部怎么来做 include
  • 重庆在线开放平台哈尔滨网络优化公司有哪些
  • 小视频网站源码厦门网络建站公司
  • 绿化公司和苗圃做网站自定义导航网站 源码
  • 微信小程序教程入门篇潮州网站seo