当前位置: 首页 > news >正文

深圳专业网站公司成都展厅设计企业

深圳专业网站公司,成都展厅设计企业,网站开发语言 .net,深圳十大传媒公司排名1. 需求概述 在分析用户行为时,查询用户的连续登录数据是一个常见需求。例如,我们需要找出每个用户连续三天登录的记录。给定一个包含用户登录记录的表,我们需要对这些数据进行处理,提取出用户连续三天登录的日期。 2. 问题说明…

1. 需求概述

在分析用户行为时,查询用户的连续登录数据是一个常见需求。例如,我们需要找出每个用户连续三天登录的记录。给定一个包含用户登录记录的表,我们需要对这些数据进行处理,提取出用户连续三天登录的日期。

2. 问题说明

假设我们有一个用户登录记录表 user_log,表结构如下:

iddt
12024-04-25
12024-04-26
12024-04-27
12024-04-28
12024-04-30
12024-05-01
12024-05-02
12024-05-04
12024-05-05
22024-04-25
22024-04-28
22024-05-02
22024-05-03
22024-05-04

我们的目标是找出每个用户连续三天登录的所有数据记录,期望的输出结果如下:

iddt
12024-04-25
12024-04-26
12024-04-27
12024-04-28
12024-04-30
12024-05-01
12024-05-02
22024-05-02
22024-05-03
22024-05-04

3. 查询思路

为了完成这个任务,我们可以利用 Hive SQL 的窗口函数来处理这个问题。主要的思路是:

  1. 窗口函数的使用:通过 LEAD() 函数获取当前登录记录的下一天和下两天的日期。
  2. 日期差计算:计算当前日期和下一天、下两天的日期差,判断是否为连续的三天。
  3. 筛选符合条件的数据:最终筛选出满足条件(即连续三天登录)的数据记录。

4. 查询实现

下面是具体的 Hive SQL 查询实现:

with t as (select *, lead(dt,1,dt) over(partition by id order by dt) last_day, lead(dt,2,dt) over(partition by id order by dt) last_2_day from user_log
),
t2 as (select *, datediff(last_2_day, dt) date_diff from t
)
select distinct id, d 
from t2 
lateral view explode(map('dt', dt, 'last_day', last_day, 'last_2_day', last_2_day)) tem as s, d 
where date_diff = 2;

5.代码解析

1. 子查询 t

这个子查询为每个用户的登录记录添加了两列,分别是 last_daylast_2_day,它们表示当前记录的下一天和下两天的登录日期。这里使用了窗口函数 LEAD() 来实现。

  • LEAD(dt, 1, dt):这个窗口函数获取当前行的下一天登录日期。如果下一天不存在,则返回当前日期 dt 作为默认值。
  • LEAD(dt, 2, dt):这个窗口函数获取当前行的下两天登录日期。如果下两天不存在,则返回当前日期 dt 作为默认值。
  • PARTITION BY id:按 id 列(即用户ID)对数据进行分组。
  • ORDER BY dt:按日期排序。

所以,t 子查询的结果将会如下(假设数据表 user_log 的某一部分):

iddtlast_daylast_2_day
12024-04-252024-04-262024-04-27
12024-04-262024-04-272024-04-28
12024-04-272024-04-282024-04-30
12024-04-282024-04-302024-05-01
12024-04-302024-05-012024-05-02
12024-05-012024-05-022024-05-04
12024-05-022024-05-042024-05-05

 

2. 子查询 t2

t2 子查询中,我们计算了日期差 date_diff,它表示 last_2_day 和当前登录日期 dt 之间的天数差。使用了 DATEDIFF() 函数来计算两个日期之间的天数差。

  • DATEDIFF(last_2_day, dt):计算 last_2_day 与当前日期 dt 之间的天数差。

date_diff 为 2 的记录说明 dtlast_2_day 是连续的三天登录。

3. LATERAL VIEW 和 EXPLODE

在查询的外层,使用了 LATERAL VIEWEXPLODE 来对数据进行展平操作,并对每个用户的连续三天登录日期进行处理。

  • LATERAL VIEWLATERAL VIEW 用于展开复杂数据类型(如数组或映射)。在这个查询中,LATERAL VIEW 展开了一个映射(map),每个映射包含了 dtlast_day 和 last_2_day 三个字段。
  • EXPLODE(map(...))EXPLODE 会将一个映射中的每个键值对展开为多行。对于每一行数据,都会根据映射的每个键值对创建一行记录。

map('dt', dt, 'last_day', last_day, 'last_2_day', last_2_day) 创建了一个映射(map),映射的键是 'dt''last_day''last_2_day',值分别是 dtlast_daylast_2_day

这将会生成一个包含每个字段名(dtlast_daylast_2_day)和值的结果行。LATERAL VIEW 使得每一行的键值对都展开为多行数据,因此可以进一步进行查询操作。

4. 查询的最终条件

最后,通过 where date_diff = 2 筛选出符合条件的记录。这意味着我们只选取那些连续三天登录的记录(日期差为 2),并通过 distinct 去重。

5. 查询结果示例

在执行查询后,我们将得到如下结果:

iddt
12024-04-25
12024-04-26
12024-04-27
12024-04-28
12024-04-30
12024-05-01
12024-05-02
22024-05-02
22024-05-03
22024-05-04

 这个结果显示了每个用户连续三天登录的记录,符合我们预期的输出。

 

 

http://www.yayakq.cn/news/281991/

相关文章:

  • 网站用ps下拉效果怎么做的阿里云wordpress教程
  • 龙口网站制作价格房天下fangcom
  • 中国建设教育网站官方手袋东莞网站建设
  • 卡片式设计网站济南做网站创意
  • 网站建设广告管理个人网站创建与管理
  • 谈谈你对互联网营销的认识免费做优化的网站
  • 网站页面优化工具常州建站服务
  • 做淘宝网站用什么软件有哪些有产品做推广,选哪个 网站
  • 龙岩天宫山缆车门票多少钱南昌seo方案
  • 网站宽度 1000px汕头自助建站系统
  • 百度网站优化外包ftp 网站 怎么上传
  • 杭州电商网站策划设计wdcp搭建wordpress
  • 电子商务类网站建设番禺网页设计
  • 烟台专业网站建设做网站价格报价费用多少钱
  • 免费外贸网站在线怎么下学做衣服网站
  • 做电影类网站网站建设可上传视频的
  • html酒店网站模板html可以用什么软件写
  • 大气的房产网站客户做网站要退款
  • 网站开发与管理做购物比价的网站
  • 手机套 东莞网站建设wordpress 秀
  • 深圳苏州企业网站建设服务商163企业邮箱费用
  • 山东建站商城广告主平台
  • 网站建设多少费用WordPress优化百度广告
  • 长沙免费模板建站长沙产品设计公司
  • 为什么做的网站在谷歌浏览器打不开有哪些网站上可以做试卷
  • 要建设一个网站需要什么在线学习网站模板
  • 网站开发需要看什么书wordpress文章代码
  • 浅谈国内高校英文网站的建设现状免费注册网站怎么做链接
  • 网站公司企业宗旨汕头网站设计定制
  • 机电网站建设网页制作模板简易