当前位置: 首页 > news >正文

腾讯云可以做网站吗wordpress 获取侧边栏

腾讯云可以做网站吗,wordpress 获取侧边栏,网站新功能演示用什么技术做的,html 存入wordpressODConv动态卷积模块 ODConv可以视作CondConv的延续,将CondConv中一个维度上的动态特性进行了扩展,同时了考虑了空域、输入通道、输出通道等维度上的动态性,故称之为全维度动态卷积。ODConv通过并行策略采用多维注意力机制沿核空间的四个维度…

ODConv动态卷积模块

ODConv可以视作CondConv的延续,将CondConv中一个维度上的动态特性进行了扩展,同时了考虑了空域、输入通道、输出通道等维度上的动态性,故称之为全维度动态卷积。ODConv通过并行策略采用多维注意力机制沿核空间的四个维度学习互补性注意力。作为一种“即插即用”的操作,它可以轻易的嵌入到现有CNN网络中。ImageNet分类与COCO检测任务上的实验验证了所提ODConv的优异性:即可提升大模型的性能,又可提升轻量型模型的性能,实乃万金油是也!值得一提的是,受益于其改进的特征提取能力,ODConv搭配一个卷积核时仍可取得与现有多核动态卷积相当甚至更优的性能。

原文地址:Omni-Dimensional Dynamic Convolution

ODConv结构图
代码实现:

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.autograd
from models.common import Conv, autopadclass Attention(nn.Module):def __init__(self, in_planes, out_planes, kernel_size, groups=1, reduction=0.0625, kernel_num=4, min_channel=16):super(Attention, self).__init__()attention_channel = max(int(in_planes * reduction), min_channel)self.kernel_size = kernel_sizeself.kernel_num = kernel_numself.temperature = 1.0self.avgpool = nn.AdaptiveAvgPool2d(1)self.fc = Conv(in_planes, attention_channel, act=nn.ReLU(inplace=True))self.channel_fc = nn.Conv2d(attention_channel, in_planes, 1, bias=True)self.func_channel = self.get_channel_attentionif in_planes == groups and in_planes == out_planes:  # depth-wise convolutionself.func_filter = self.skipelse:self.filter_fc = nn.Conv2d(attention_channel, out_planes, 1, bias=True)self.func_filter = self.get_filter_attentionif kernel_size == 1:  # point-wise convolutionself.func_spatial = self.skipelse:self.spatial_fc = nn.Conv2d(attention_channel, kernel_size * kernel_size, 1, bias=True)self.func_spatial = self.get_spatial_attentionif kernel_num == 1:self.func_kernel = self.skipelse:self.kernel_fc = nn.Conv2d(attention_channel, kernel_num, 1, bias=True)self.func_kernel = self.get_kernel_attentionself._initialize_weights()def _initialize_weights(self):for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')if m.bias is not None:nn.init.constant_(m.bias, 0)if isinstance(m, nn.BatchNorm2d):nn.init.constant_(m.weight, 1)nn.init.constant_(m.bias, 0)def update_temperature(self, temperature):self.temperature = temperature@staticmethoddef skip(_):return 1.0def get_channel_attention(self, x):channel_attention = torch.sigmoid(self.channel_fc(x).view(x.size(0), -1, 1, 1) / self.temperature)return channel_attentiondef get_filter_attention(self, x):filter_attention = torch.sigmoid(self.filter_fc(x).view(x.size(0), -1, 1, 1) / self.temperature)return filter_attentiondef get_spatial_attention(self, x):spatial_attention = self.spatial_fc(x).view(x.size(0), 1, 1, 1, self.kernel_size, self.kernel_size)spatial_attention = torch.sigmoid(spatial_attention / self.temperature)return spatial_attentiondef get_kernel_attention(self, x):kernel_attention = self.kernel_fc(x).view(x.size(0), -1, 1, 1, 1, 1)kernel_attention = F.softmax(kernel_attention / self.temperature, dim=1)return kernel_attentiondef forward(self, x):x = self.avgpool(x)x = self.fc(x)return self.func_channel(x), self.func_filter(x), self.func_spatial(x), self.func_kernel(x)class ODConv2d(nn.Module):def __init__(self, in_planes, out_planes, k, s=1, p=None, g=1, act=True, d=1,reduction=0.0625, kernel_num=1):super(ODConv2d, self).__init__()self.in_planes = in_planesself.out_planes = out_planesself.kernel_size = kself.stride = sself.padding = autopad(k, p)self.dilation = dself.groups = gself.kernel_num = kernel_numself.attention = Attention(in_planes, out_planes, k, groups=g,reduction=reduction, kernel_num=kernel_num)self.weight = nn.Parameter(torch.randn(kernel_num, out_planes, in_planes//g, k, k),requires_grad=True)self._initialize_weights()self.bn = nn.BatchNorm2d(out_planes)self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())if self.kernel_size == 1 and self.kernel_num == 1:self._forward_impl = self._forward_impl_pw1xelse:self._forward_impl = self._forward_impl_commondef _initialize_weights(self):for i in range(self.kernel_num):nn.init.kaiming_normal_(self.weight[i], mode='fan_out', nonlinearity='relu')def update_temperature(self, temperature):self.attention.update_temperature(temperature)def _forward_impl_common(self, x):# Multiplying channel attention (or filter attention) to weights and feature maps are equivalent,# while we observe that when using the latter method the models will run faster with less gpu memory cost.channel_attention, filter_attention, spatial_attention, kernel_attention = self.attention(x)batch_size, in_planes, height, width = x.size()x = x * channel_attentionx = x.reshape(1, -1, height, width)aggregate_weight = spatial_attention * kernel_attention * self.weight.unsqueeze(dim=0)aggregate_weight = torch.sum(aggregate_weight, dim=1).view([-1, self.in_planes // self.groups, self.kernel_size, self.kernel_size])output = F.conv2d(x, weight=aggregate_weight, bias=None, stride=self.stride, padding=self.padding,dilation=self.dilation, groups=self.groups * batch_size)output = output.view(batch_size, self.out_planes, output.size(-2), output.size(-1))output = output * filter_attentionreturn outputdef _forward_impl_pw1x(self, x):channel_attention, filter_attention, spatial_attention, kernel_attention = self.attention(x)x = x * channel_attentionoutput = F.conv2d(x, weight=self.weight.squeeze(dim=0), bias=None, stride=self.stride, padding=self.padding,dilation=self.dilation, groups=self.groups)output = output * filter_attentionreturn outputdef forward(self, x):return self.act(self.bn(self._forward_impl(x)))
http://www.yayakq.cn/news/498433/

相关文章:

  • 做网站开发想转行做医药销售即时设计网页
  • 北京景网站建设企业型网站开发
  • 广州网站设计推荐柚米做推广的公司一般都叫什么
  • 可信网站 quot 验证能防范哪些安全.做自媒体都有什么网站
  • wordpress homeslide做网站优化好的网络公司
  • 怎么开一个做网站的工作室做网站为什么能挣钱
  • 成都企业网站建站wordpress 关键词
  • 网站与网页设计网站右侧二维码代码
  • 在建设银行网站申请完信用卡南充建网站
  • 梅州市住房与城乡建设局网站wordpress 获取文章标题
  • 中资源的 域名管理网站衡水建个网站多少钱
  • 城阳建设局网站程序员找工作网站
  • 网站建设 阳江wordpress 随机展示
  • uemo网站平台建设南宫28在线注册网站
  • 做网站排名的王也天年龄
  • 米拓模板网站建设asp个人网站论文
  • 网站建设后端网页制作与设计软件
  • 外贸网站源代码用centos搭建wordpress
  • 网站放在服务器上视频推广方案模板
  • 设计的网站织梦模板安装
  • 有帮人做网站的人吗好网站你知道的
  • 泉州做网站设计小程序是什么东西
  • 织梦网站开发视频教程网站建设需要具备的能力
  • 北京市网站建设 维护推荐徐州网站seo公司
  • 莱芜大集快速seo排名优化
  • 做游戏的网站的公司买布做衣裳 在哪个网站买好
  • 生态农业网站建设方案广州科技网站建设
  • 郑州住房和城乡建设厅网站智慧团建注册志愿者入口
  • 潍坊外贸网站建设商标做网站logo
  • 哪个网站做婚礼邀请函好青岛网站推