当前位置: 首页 > news >正文

网站开发技术文档格式网页编辑岗位职责

网站开发技术文档格式,网页编辑岗位职责,网站内部代码优化,外包公司网站开发1 数组的形状变换 NumPy 提供了多种方法来改变数组的形状。这些方法不会改变数组的内容,而是重新组织数据的排列方式。 1.1 reshape() 函数 reshape() 是最常用的形状变换函数,它可以改变数组的形状,前提是变换后的总元素数量与原数组一致…
1 数组的形状变换

NumPy 提供了多种方法来改变数组的形状。这些方法不会改变数组的内容,而是重新组织数据的排列方式。

1.1 reshape() 函数

reshape() 是最常用的形状变换函数,它可以改变数组的形状,前提是变换后的总元素数量与原数组一致。

import numpy as np# 创建一个一维数组
arr = np.arange(12)# 将一维数组变换为 3x4 的二维数组
reshaped_arr = arr.reshape(3, 4)print("原数组:", arr)
print("变换后的数组:\n", reshaped_arr)

注意: 如果变换后的维度不能满足元素总数要求,reshape() 会抛出错误。

1.2 ravel() 函数

ravel() 可以将多维数组展平为一维数组,返回的是原数组的视图,修改展平后的数组也会影响原数组。

# 展平二维数组
flattened_arr = reshaped_arr.ravel()
print("展平后的数组:", flattened_arr)
1.3 transpose() 函数

transpose() 用于对多维数组进行转置操作,交换其维度。对于二维数组,转置会将行和列互换。

# 对二维数组进行转置
transposed_arr = reshaped_arr.transpose()
print("转置后的数组:\n", transposed_arr)
1.4 resize() 函数

resize()reshape() 类似,但不同的是,resize() 会直接修改原数组,并且在调整数组大小时,会自动填充或截取数据。

# 使用 resize 改变数组大小
reshaped_arr.resize(2, 6)
print("使用 resize 改变后的数组:\n", reshaped_arr)

2 数组的合并与分割

NumPy 提供了方便的数组合并与分割操作,可以灵活处理数据的拼接与拆分。

2.1 数组的合并

水平合并(hstack)垂直合并(vstack) 是最常见的数组合并操作,用于将多个数组沿着不同轴合并。

# 创建两个数组
arr1 = np.array([[1, 2], [3, 4]])
arr2 = np.array([[5, 6], [7, 8]])# 水平合并
hstack_arr = np.hstack((arr1, arr2))
print("水平合并后的数组:\n", hstack_arr)# 垂直合并
vstack_arr = np.vstack((arr1, arr2))
print("垂直合并后的数组:\n", vstack_arr)
2.2 数组的分割

NumPy 提供了 split() 函数,可以将数组按照指定的规则进行分割。

# 创建一个数组
arr = np.arange(16).reshape(4, 4)# 按行分割为两个数组
split_arr = np.split(arr, 2, axis=0)
print("按行分割的数组:\n", split_arr)# 按列分割为两个数组
split_arr_col = np.split(arr, 2, axis=1)
print("按列分割的数组:\n", split_arr_col)

3 数组的排序与搜索

排序和搜索操作在数据分析中非常常用。NumPy 提供了多种方法来对数组进行排序、筛选和搜索。

3.1 数组排序

sort() 函数可以对数组进行排序,支持对一维数组、二维数组进行排序,并且可以指定沿哪个轴进行排序。

# 创建一个随机数组
arr = np.random.randint(1, 100, size=(4, 4))# 对数组进行排序(默认沿最后一个轴)
sorted_arr = np.sort(arr)print("原数组:\n", arr)
print("排序后的数组:\n", sorted_arr)

可以使用 axis 参数指定沿哪个维度进行排序:

# 沿着行排序
sorted_arr_row = np.sort(arr, axis=1)
print("按行排序后的数组:\n", sorted_arr_row)# 沿着列排序
sorted_arr_col = np.sort(arr, axis=0)
print("按列排序后的数组:\n", sorted_arr_col)
3.2 数组的搜索

argmax()argmin() 函数用于查找数组中最大值或最小值的索引,where() 函数则可以用于根据条件查找满足条件的元素。

# 查找数组中最大值和最小值的位置
max_index = np.argmax(arr)
min_index = np.argmin(arr)print("最大值的位置:", max_index)
print("最小值的位置:", min_index)# 使用 where 查找数组中大于 50 的元素
condition = np.where(arr > 50)
print("数组中大于 50 的元素索引:", condition)
3.3 argsort() 函数

argsort() 返回的是排序后的索引值,而不是排序后的数组本身。这在需要保留原数组顺序的同时对索引进行操作时非常有用。

# 创建一个随机数组
arr = np.array([42, 12, 19, 33])# 使用 argsort 获取排序后的索引
sorted_index = np.argsort(arr)
print("排序后的索引:", sorted_index)# 使用排序后的索引访问原数组
sorted_arr = arr[sorted_index]
print("按索引排序后的数组:", sorted_arr)

4 数组的去重与重复

NumPy 提供了去重和生成重复数据的功能,这在数据预处理和特征工程中非常常见。

1 数组去重

unique() 函数用于对数组进行去重,返回的是去重后的数组。

# 创建一个包含重复元素的数组
arr = np.array([1, 2, 2, 3, 4, 4, 5])# 使用 unique 函数去重
unique_arr = np.unique(arr)
print("去重后的数组:", unique_arr)
2 数组的重复

tile()repeat() 函数可以用于生成重复数据。

# 使用 repeat 函数重复每个元素 2 次
repeat_arr = np.repeat(arr, 2)
print("重复后的数组:", repeat_arr)# 使用 tile 函数将整个数组重复 2 次
tile_arr = np.tile(arr, 2)
print("数组重复后的结果:", tile_arr)

http://www.yayakq.cn/news/904530/

相关文章:

  • 什么网站做招聘效果好南通建设网站公司
  • 关键词排名查询api十堰优化排名技术厂家
  • 合肥哪家制作网站wordpress添加注册页面模板
  • 阿里巴巴有几个网站是做外贸的常用网站png
  • 网站页面尺寸大小长春门户网站建设制作
  • 网站整体建设方案常平东莞网站设计
  • 吴江建网站外贸营销方式有哪些
  • 公司网站做么做百度排名泰安网络安全培训
  • 公司建设网站能提升什么竞争力网站开发定制案例展示
  • 晋城网站设计太原有做网站的吗
  • 山西做网站站长工具在线免费观看
  • 根据图片做网站用什么搜索wordpress博客
  • kali建设网站淮北网站建设求职简历
  • 密云网站建设服务湘潭县建设投资有限公司网站
  • 网站右侧虚代码网站怎么在百度搜不到
  • 做音乐网站怎么放音乐百度一下首页
  • 制作简易网站网页设计平均工资
  • 精美化妆品网站模板三明网站建设公司
  • 一级a做爰网站免费怎么查百度竞价关键词价格
  • 衡水哪家制作网站好怎么做vip视频网站
  • 个人电脑搭建成网站服务器公司网站策划方案
  • 网站关键词热度网站建设开票分类编码
  • 用php做电子商务网站邢台网站建设讯息
  • 上海网站定制团队国外创意包装设计欣赏
  • 备案网站到期了怎么办seo关键词优化软件合作
  • 网站友情链接怎么做天津飞机模型制作公司
  • 网站整体框架wordpress虚拟主机推荐
  • 无锡建设厅的官方网站襄阳企业网站建设
  • 广州做网站 信科便宜网站开发 验收模板
  • 南康做网站网站建设流程百度经验